View-decoupled Transformer for Person Re-identification under Aerial-ground Camera Network

摘要:现有的人再识别方法在同质相机的基于外观的身份关联方面取得了显著进展,例如地-地匹配。然而,作为一个更实际的场景,在异构摄像机中,空中地面人员再识别(AGPReID)得到的关注很少。为了缓解AGPReID中由于显著的视图差异对鉴别身份表示的破坏,提出了一种简单而有效的视图解耦变压器(VDT)框架。在VDT中设计了两个主要组件来解耦视图相关和视图不相关的特征,即层次减法分离和正交损失,其中层次减法分离将这两个特征分离到VDT内,而正交损失将这两个特征约束为独立。此外,我们还提供了一个名为CARGO的大规模AGPReID数据集,该数据集由5 / 8个航空/地面摄像机,5000个身份和108,563张图像组成。在两个数据集上的实验表明,VDT是一种可行有效的AGPReID解决方案,在保持相同计算复杂度的情况下,VDT在mAP/Rank1上比以前的方法在CARGO上高出5.0%/2.7%,在AG-ReID上高出3.7%/5.2%。我们的项目可在https://github.com/ LinlyAC/VDT-AGPReID上获得。

1. 简介

人员再识别(ReID)旨在基于跨摄像机身份相似度关联感兴趣的人物图像,社会和公民的安全[1-5]。传统的ReID在深度学习时代取得了显著的进展[6-16],但由于以下原因,它与现实场景相差甚远。(1)大多数现有的ReID数据集都是从同构摄像机网络收集的,该网络由相同类型的摄像机组成,如仅地面[17]或仅空中[18]摄像机网络。然而,从图1可以看出,现实世界的监控系统往往部署为异构摄像机网络,包括空中和地面相机,而不是单独的单一类型。地面摄像机覆盖发达地区(城市中心),空中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值