2023-2024步态识别论文研读系列02(AAAI2024)SkeletonGait: Gait Recognition Using Skeleton Maps

论文题目:SkeletonGait: Gait Recognition Using Skeleton Maps

基于骨骼图的步态识别

论文地址:[2311.13444] SkeletonGait: Gait Recognition Using Skeleton Maps

代码地址:ShiqiYu/OpenGait: A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

目录

目录

 一、摘要理解

论文解决方法

相关工作

骨架图优势

数据的预处理是怎么实现的?

SkeletonGait++


摘要

对于深度步态识别方法来说,特征的选择至关重要。在近期的文献中,二值轮廓和骨骼坐标是两种主要的特征表示,在许多场景中取得了显著的进展。然而,仍然存在固有的挑战,即在不受约束的场景中,轮廓并不总是有保障的,而且骨骼中的结构线索也未得到充分利用。在本文中,我们引入了一种新颖的骨骼步态表示,称为骨骼图,以及基于骨骼的方法SkeletonGait,用于从人类骨骼图中挖掘结构信息。具体而言,骨骼图将人体关节的坐标表示为具有高斯近似的热图,呈现出一种类似轮廓的图像,没有确切的身体结构。除了在五个
流行的步态数据集上实现了最先进的性能外,更重要的是,SkeletonGait 揭示了关于结构特征在描述步态中的重要性以及它们何时发挥作用的新见解。此外,我们还提出了一种多分支架构,名为SkeletonGait++,以利用骨骼和轮廓的互补特征。实验表明,SkeletonGait++ 在各种场景中均大幅优于现有的最先进方法。例如,在具有挑战性的GREW 数据集上,它实现了超过85%的令人瞩目的排名第一的准确率。

 一、摘要理解
 

1.现有挑战与现有方法存在的问题:在不受约束的场景中,轮廓并不总是有保障的,骨架中的结构线索也未得到充分利用

怎么理解?

轮廓呈现了一个人的外形,但是当在一些不受约束的场景中,比如遮挡、穿大衣、背包,视角变化等,会造成轮廓发生巨大变化,引入了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值