YOLOv8图像识别与目标检测实战:从项目文件结构开始到多场景应用的解析(文章包括完整代码以及演示图片和结果图)

YOLOv8图像目标检测项目解析

目录

  • YOLOv8图像目标检测项目解析
    • 目录
    • 效果预览
    • 项目文件结构
    • 项目简介
    • 代码详细解析
      • 1. 环境配置和依赖导入
      • 2. 模型加载和图像预处理
      • 3. 目标检测流程
      • 4. 结果展示
    • 应用场景
    • 项目特点
    • 使用说明

效果预览

原始图片(该图片是从一个交通的视频中截取的):
原始图片
处理后的图片(包括了识别的物体并标注了名称):
处理后的图片

项目文件结构

YOLO_Project/
│
├── TEST/
    ├── test2.py          # 主程序文件
    ├── yolov8x.pt        # YOLOv8预训练模型
    │
    ├── datasets/         # 输入图片目录
    │   └── test.png      # 测试图片
    │
    └── results/          # 输出结果目录
        └── result.png    # 检测结果图片
 

项目简介

这是一个基于YOLOv8模型的图像目标检测项目,能够识别图像中的多个对象,并在图像上标注出检测结果。

代码详细解析

1. 环境配置和依赖导入

import cv2  
from ultralytics import YOLO  
import os

current_dir = os.path.dirname(os.path.abspath(__file__))
  • 使用OpenCV处理图像
  • 导入YOLO模型进行目标检测
  • 使用os模块处理文件路径
  • 获取当前文件所在目录路径

2. 模型加载和图像预处理

# 加载模型  
model = YOLO('yolov8x.pt')  
  
# 设置图片路径
image_path = os.path.join(current_dir, 'datasets', 'test.png')
image_write_path = os.path.join(current_dir, 'results', 'result.png')

# 读取图像
image = cv2.imread(image_path)  

# 获取屏幕分辨率和图像缩放
screen_res = 1920, 1080
scale_width = screen_res[0] / image.shape[1]
scale_height = screen_res[1] / image.shape[0]
scale = min(scale_width, scale_height) * 0.8

# 图像缩放处理
if scale < 1:
    new_width = int(image.shape[1] * scale)
    new_height = int(image.shape[0] * scale)
    image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_AREA)
  • 加载预训练的YOLOv8x模型
  • 自动处理图像尺寸,使其适应屏幕显示
  • 支持大尺寸图像的自动缩放功能

3. 目标检测流程

# 进行目标检测  
results = model(image)  

# 显示检测结果
for result in results:
    boxes = result.boxes  # Boxes object for bbox outputs
    for box in boxes:
        # 获取边界框坐标
        x1, y1, x2, y2 = box.xyxy[0]
        x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
        
        # 绘制边界框
        cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
        
        # 添加类别标签和置信度
        conf = float(box.conf)
        cls = int(box.cls)
        label = f'{result.names[cls]} {conf:.2f}'
        cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
  • 模型对输入图像进行推理
  • 获取检测框信息
  • 显示每个检测对象的类别和置信度
  • 在图像上绘制边界框和标签

4. 结果展示

# 保存图像
cv2.imwrite(image_write_path, image)

# 创建可调整大小的窗口
cv2.namedWindow('Detection Result', cv2.WINDOW_NORMAL)
cv2.resizeWindow('Detection Result', new_width, new_height)

# 显示图像
cv2.imshow('Detection Result', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
  • 将处理后的图像保存到指定位置
  • 创建可调整大小的窗口显示结果
  • 支持交互式查看检测结果

应用场景

  1. 安防监控

    • 实时监控摄像头画面
    • 检测可疑人员或物品
  2. 工业质检

    • 产品缺陷检测
    • 工业零件识别
  3. 智慧城市

    • 交通流量监控
    • 车辆违规检测
  4. 零售分析

    • 商品识别
    • 货架商品摆放检测
  5. 医疗影像

    • 医学图像异常检测
    • 病理分析辅助

项目特点

  1. 支持多目标同时检测
  2. 自动适应不同尺寸的输入图像
  3. 提供可视化检测结果
  4. 高精度的目标识别能力
  5. 实时处理和显示功能

使用说明

  1. 确保安装了必要的依赖(OpenCV, ultralytics)
  2. 将待检测图像放入datasets文件夹
  3. 运行程序后自动在results文件夹生成检测结果
  4. 按任意键关闭结果显示窗口

我使用的是一个交通场景图片,各位可以尝试其他的场景图片,也都是可以识别的,项目已经包含完整代码,想要项目文件的可以关注我,留下自己的邮箱,在操作过程中有任何问题也欢迎交流。
如果大家想看如何使用yolo进行视频的目标检测,可以移步到我的这篇文章YOLOv8基于视频的帧图像识别与目标检测实战:从项目文件结构开始到多场景应用的解析(文章包括完整代码以及演示视频和结果视频)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

superior tigre

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值