线性回归的简洁实现
数据准备
import torch
import numpy as np
import torch.nn as nn
num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2
features = torch.tensor(np.random.normal(0, 1, (num_examples,num_inputs)), dtype=torch.float)
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] +true_b
labels += torch.tensor(np.random.normal(0, 0.01,size=labels.size()), dtype=torch.float)
数据读取器
PyTorch提供了 data 包来读取数据。由于 data 常⽤作变量名,我们将导⼊的 data 模块⽤ Data 代替。在每⼀次迭代中,我们将随机读取包含10个数据样本的⼩批量。
import torch.utils.data as Data
batch_size = 10
# 将训练数据的特征和标签组合
dataset = Data.TensorDataset(features, labels)
# 随机读取⼩批量
data_iter = Data.DataLoader(dataset, batch_size, shuffle=True)
for X, y in data_iter:
print(X, y)
break
定义模型
class LinearNet(nn.Module):
def __init__(self, n_feature):
super(LinearNet, self).__init__()
self.linear = nn.Linear(n_feature, 1)
# forward 定义前向传播
def forward(self, x):
y = self.linear(x)
return y
net = LinearNet(2)
print(net) # 使⽤print可以打印出⽹络的结构
PyTorch的nn.Linear()是用于设置网络中的全连接层(线性层)的,需要注意在二维图像处理的任务中,全连接层的输入与输出一般都设置为二维张量,形状通常为[batch_size, size],不同于卷积层要求输入输出是四维张量。
定义损失函数和优化算法
均⽅误差损失作为模型的损失函数。
loss = nn.MSELoss()
优化算法
import torch.optim as optim
optimizer = optim.SGD(net.parameters(), lr=0.03)
print(optimizer)
训练模型
num_epochs = 3
for epoch in range(1, num_epochs + 1):
for X, y in data_iter:
output = net(X)
l = loss(output, y.view(-1, 1))
optimizer.zero_grad() # 梯度清零,等价于net.zero_grad()
l.backward()
optimizer.step()
print('epoch %d, loss: %f' % (epoch, l.item()))
打印训练好的参数
for param in net.parameters():
print(param)
可以看到与真实值很接近。