含氢微网优化调度模型matlab

 目录

1 主要内容

模型示意图

目标函数

2 部分程序

3 程序结果

4 下载链接


主要内容

最近咨询含氢微网优化调度模型的同学较多,本次就分享一个高质量的源码资源。该程序方法复现《Simulation of design and operation of hydrogen energy utilization system for a zero emission building》部分模型,建立了含氢微网的优化调度模型,包括燃料电池、储氢、储能、光伏和电网供电等主体变量、出力约束以及电能平衡约束等,时间维度为24小时,以电网供电平方和为目标(即和电网交互功率最小为目标)。

  • 模型示意图

  • 目标函数

部分程序

%% initialization
clc;
clear;
yalmip;
Cplex;
%% variant
Pely=sdpvar(1,24,'full'); %ely 氢气产生
Pfc=sdpvar(1,24,'full'); %fc 燃料电池
Pbc=sdpvar(1,24,'full');%battery bc 电池充电
Pbd=sdpvar(1,24,'full');%battery bd 电池放电
Pgrid=sdpvar(1,24,'full');%电网电能
soc=sdpvar(1,25,'full');%电网储能容量
loh=sdpvar(1,25,'full');%储氢量
Temp_cha=binvar(1,24,'full'); %battary charge
Temp_dis=binvar(1,24,'full'); %battery discharge
Temp_ely=binvar(1,24,'full'); % ELY state 
Temp_fc=binvar(1,24,'full'); % FC state 
Pely2=sdpvar(1,24,'full');%多余光伏转化为ELY
Constraints = [];
​
%-------------------------constant-----------------------%
Load=0.3*[88.24   83.01   80.15   79.01   76.07   78.39   89.95   128.85   155.45   176.35   193.71   182.57   179.64   166.31   164.61   164.61   174.48   203.93   218.99   238.11   216.14   173.87   131.07   94.04];
Ppv=[0  0  0  0  0.06  6.54  20.19  39.61  49.64  88.62  101.59  66.78  110.46  67.41  31.53...
    50.76  20.6  22.08  2.07  0  0  0  0  0];%光伏出力预测值
​
%% constraints
  Constraints=[Constraints,soc(1,1)==50];%初始储能值
  Constraints=[Constraints,loh(1,1)==50];%初始储氢量
for k = 1:24
  Constraints =[Constraints,Pfc(1,k)+Ppv(1,k)+Pbd(1,k)+Pgrid(1,k)==Load(1,k)+Pbc(1,k)+Pely(1,k)]; %能量平衡

程序结果

### 含氢优化调度的技术与解决方案 #### 1. 分解算法的应用 分解算法是一种有效的手段,用于解决大规模优化问题。它通过将复杂的全局问题划分为若干个小规模子问题来简化计算流程[^1]。这些子问题可以在独立的模块中求解,随后利用协调机制将各部分的结果整合到一起。这种方法特别适合于处理含氢中的多时间尺度和多层次决策场景。 #### 2. 启发式算法的作用 启发式算法能够提供一种灵活的方式以应对高维度、非线性的优化挑战。例如,遗传算法(Genetic Algorithm, GA)、粒子群优化(Particle Swarm Optimization, PSO)等可以通过模拟自然界的进化过程找到接近最优的可行方案[^1]。这类方法尤其适用于含有不确定性和动态变化因素的实际工程环境。 #### 3. 基于MILP/MIQP的方法 对于具体的优化目标设计,如最小化运行成本或最大化可再生能源利用率等问题,则可以采用数学规划工具进行精确建模并求解。其中,混合整数线性规划(Mixed Integer Linear Programming, MILP)被广泛应用于日前调度阶段,而混合整数二次规划(Mixed Integer Quadratic Programming, MIQP)则常结合模型预测控制(Model Predictive Control, MPC),进一步提升日内实时调控性能[^2]。 以下是针对上述两种典型情况的一个简单MATLAB伪代码框架: ```matlab % 日前优化 (MILP) function [solution_day_ahead] = solveDayAheadOptimization() % 定义变量... % 设置约束条件... % 构造目标函数:min C_total = sum(C_electricity + C_hydrogen_production ...) solution_day_ahead = intlinprog(f, Aineq, bineq, Aeq, beq); end % 日内滚动优化 (MIQP with MPC) function [solution_intra_day] = solveIntradayRollingHorizon() for t = 1:T_horizon % 更新当前时刻的状态估计 % 调用MIQP求解器获取未来窗口内的最佳动作序列 % 执行第一个时间段的动作并将结果反馈给系统状态更新逻辑 end solution_intra_day = collected_actions; end ``` #### 4. 综合能源系统的建模特点 在构建完整的含氢优化调度模型时,还需要充分考虑到不同能量形式之间的转换效率以及存储损耗等因素的影响。具体而言,这包括但不限于以下几个方面: - **电转氢(Power-to-Hydrogen)** 和其他相关化学反应动力学参数; - **蓄热槽(Thermal Storage Tank)** 的充放热行为描述及其边界条件设定; - 风光互补发电单元的工作曲线拟合及不确定性量化分析; - 不同储能介质间的协同作用规律挖掘等等[^2]。 --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值