玩转ubuntu18 --机器视觉方面(yolo算法识别及摄像头和cmake问题解决)

玩转ubuntu18 --机器视觉方面(yolo v3算法识别)
1.YOLO的简介
工作原理
先前的检测系统重新调整分类器或本地化器以执行检测。他们将模型应用于多个位置和比例尺的图像。图像的高分区域被视为检测。

我们使用完全不同的方法。我们将单个神经网络应用于整个图像。该网络将图像划分为区域,并预测每个区域的边界框和概率。这些边界框按预测概率加权。
我们的模型比基于分类器的系统具有几个优势。它在测试时间查看整个图像,因此其预测由图像中的全球上下文提供信息。它还通过单一网络评估进行预测,这与R-CNN等系统不同,后者需要数千张图像。这使得它非常快,比R-CNN快1000倍以上,比快速R-CNN快100倍。有关完整系统的更多详细信息,请参阅我们的文件

这些是官方解释
在这里插入图片描述

处理识别信息图
在这里插入图片描述
2.Ubuntu18 安装yolo v3

sudo apt-get update
git clone https://github.com/pjreddie/darknet
cd darknet

建议大家搭梯子下载,要不然速度确实很慢
文章末尾有资源包
加入darknet文件之后,立刻寻找makefile文件
如果你们按照了opencv及cuda cudnn 这些,根据makefile的提示把0修改为1 即可
如果你们啥也没安装 那就保持不动
最后大家都是直接make -j4
等待几分钟即可在这里插入图片描述
只要没看见error 说明就ok了。
之后下载权重文件(237MB)

wget https://pjreddie.com/media/files/yolov3.weights

3.测试yolo v3识别效果

./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg
./darknet detect cfg/yolov3.cfg yolov3.weights data/person.jpg
./darknet detect cfg/yolov3.cfg yolov3.weights data/horses.jpg

识别1
在这里插入图片描述
在这里插入图片描述
识别2
在这里插入图片描述

在这里插入图片描述
识别3
在这里插入图片描述
在这里插入图片描述
当然,如果大家想连连接摄像头 然后进行识别 最好装一下opencv
然后重新make clean一下 再进入makefile文件里面 修改opencv的数值即可
然后继续make。
最后 敲这个指令

./darknet detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights 

因为yolo是靠cpu进行计算的,如果大家没装cuda的话 可能速度较慢 稍微等待一下即可

4.解决一些问题

1.cmake版本问题
最有效方法————————-面向百度

wget https://cmake.org/files/v3.9/cmake-3.9.2.tar.gz
tar zxvf  cmake-3.9.2.tar.gz
cd cmake-3.9.2
./configure
make
sudo make install
sudo vim /etc/profile
export PATH=$PATH:/lnmp/src/.....

  1. 摄像头问题
    Ubuntu18 有一共摄像头软件 就是cheese
sudo apt-get install cheese
然后 直接 cheese 即可

如果 还是没有图像的话
点击虚拟机 然后点击可移动设备 连接即可 在这里插入图片描述
修改一下USB兼容性即可

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值