试推导取自总体X(期望为μ,方差为σ^2)的样本X1,X2...Xn的样本方差S^2的期望

问题所在:试推导取自总体X(期望为μ,方差为σ^2)的样本X1,X2...Xn的样本方差S^2的期望

用到的样本方差公式:

在这里插入图片描述

推导过程在这里插入图片描述

最后结果:

在这里插入图片描述

贝叶斯估计是一种参数估计的方法,它结合了先验概率和观测数据来得出对参数的估计值。对于正态分布的均值的贝叶斯估计公式推导如下: 设原始数据的样本集合为X={x1, x2, ..., xn},假设这些样本是独立同分布的,并服从正态分布N(μ, σ^2)。其中μ为均值,σ^2方差,我们的目标是对均值μ进行估计。 首先,我们引入先验概率密度函数p(μ),表示对均值μ的预先假设。一般我们使用无信息先验,即假设μ的先验服从一个较为平坦的概率分布,比如均匀分布或者高斯分布。 根据贝叶斯定理,可以得到参数μ的后验概率分布公式为: p(μ|X) = p(X|μ) * p(μ) / p(X) 其中p(X|μ)为似然函数,表示给定μ下,样本X出现的概率;p(μ)为先验概率密度函数,表示对μ的预先假设;p(X)为归一化常数,用于保证后验概率的和为1。 假设样本X是独立同分布的,那么似然函数可以表示为: p(X|μ) = p(x1) * p(x2) * ... * p(xn) 由于样本X的每一个观测值x都服从正态分布N(μ, σ^2),故似然函数可以写成: p(X|μ) = (1/√(2πσ^2))^n * exp(-(x1)^2/(2σ^2)) * exp(-(x2)^2/(2σ^2)) * ... * exp(-(xn)^2/(2σ^2)) 然后,我们将上述公式带入到贝叶斯定理的后验概率分布公式中,得到: p(μ|X) = (1/√(2πσ^2))^n * exp(-(x1)^2/(2σ^2)) * exp(-(x2)^2/(2σ^2)) * ... * exp(-(xn)^2/(2σ^2)) * p(μ) / p(X) 其中p(μ)为先验概率密度函数,p(X)为归一化常数,对于计算μ的贝叶斯估计值并不重要,故我们可以忽略。 最后,我们通过求解使得后验概率分布达到最大的μ的值来估计真实的均值μ。一般可以通过对概率分布取对数,然后对μ求导等方法来求解最大化的问题。 以上就是对正态分布均值的贝叶斯估计公式的详细推导过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值