考研数学|向量代数与空间解析几何

本文介绍了向量代数的基础概念,包括数量积、向量积及其几何应用,如确定法向量和体积。同时,探讨了空间中平面的方程形式,如一般式、点法式和截距式,以及直线方程的不同表达方式。此外,还涉及点到面、点到线的距离计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

向量代数

数量积

投影符号

Prj_uA=|A|*\cos < A,u>

向量积

方向性,由右手法则确定

a\times b=-\left ( a\times b \right )

几何应用,表示同时垂直于由a,b向量构成平面的法向量

混合积

\left ( abc \right )=\left ( a\times b \right )\cdot c

几何应用,\left | \left ( abc \right ) \right |表示三个向量为棱边的平行六面体的体积

空间平面和直线

平面方程

(1)一般式:Ax+By+Cz+D=0

(2)点法式:A\left ( x-x_0 \right )+B(y-y_0)+C(z-z_0)=0

注意点法式和一般式都直接给出了平面方程的法向量

(3)截距式:\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1

(4)平面束:对于直线

\left\{ \begin{array}{ll} A_1x+B_1y+C_1z+D_1=0\\ A_2x+B_2y+C_2z+D_2=0 \end{array} \right.

可以给出平面束方程

A_1x+B_1y+C_1z+D_1+\lambda( A_2x+B_2y+C_2z+D_2)=0

在直线平面综合应用上非常实用

直线方程

(1)一般式,表示两个平面的交线

\left\{ \begin{array}{ll} A_1x+B_1y+C_1z+D_1=0\\ A_2x+B_2y+C_2z+D_2=0 \end{array} \right.

(2)对称式,对称式给出了直线的方向向量和经过的点

\frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c}

(3)由对称式可写出参数式

\\x=x_0+lt\\ y=y_0+lt\\ z=z_0+lt\\

点面距离,点线距离

点面距离

d=\frac{|Ax_0+By_0+Cz_0+D|}{\sqrt{A^2+B^2+C^2}}

点线距离,书上公式过于复杂,化简后易于理解

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值