R语言入门:vegan包vegdist()函数的解释与用法

这篇文章介绍了vegdist()函数在Rvegan包中的使用,用于计算生态学研究中不同样本间的距离,支持多种距离计算方法,如欧氏、曼哈顿、Bray-Curtis等,适用于聚类分析和多样性测试等生态学分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、基本介绍

vegan包中的vegdist()函数是用于计算生态学研究中样本间距离或相异性的函数。该函数主要用于计算样本之间的距离矩阵,以便进行后续的聚类分析(Cluster Analysis)、非参数多样性测试(Non-parametric Diversity Testing)、主坐标分析(PCoA分析)等。

  • 目的:计算样本之间的距离矩阵,用于比较它们之间的相似性或差异性。
  • 输入:通常是一个数据矩阵,其中行代表样本,列代表各个特征或物种的相对丰度。
  • 输出:距离矩阵,其中每个元素表示两个样本之间的距离或相异性。

2、基本语法及参数解释

vegdist(x, method="bray", binary=FALSE, diag=FALSE, upper=FALSE,
        na.rm = FALSE, ...) 

参数解释:

  • x:数据矩阵,其中行代表样本,列代表各个特征或物种的相对丰度。

  • method:距离计算方法。这是一个字符串参数,用于指定计算距离的方法。常见的方法包括:"manhattan""euclidean""canberra""clark""bray""kulczynski""jaccard""gower""altGower""morisita""horn""mountford""raup""binomial""chao""cao""mahalanobis""chisq""chord""hellinger""aitchison", 或 "robust.aitchison"

  • binary:逻辑值,用于指定是否计算二元指数。如果为TRUE,则使用二元数据计算距离;如果为FALSE,则使用定量数据计算距离。默认值为FALSE。

  • diag:逻辑值,用于指定是否计算对角线上的距离。如果为TRUE,则对角线上的距离将被计算并返回到结果中;如果为FALSE,则对角线上的距离将被忽略。默认值为FALSE。

  • upper:逻辑值,用于指定是否返回距离矩阵的上三角部分。如果为TRUE,则返回距离矩阵的上三角部分(不包括对角线);如果为FALSE,则返回完整的距离矩阵。默认值为FALSE。

  • na.rm:逻辑值,用于指定是否删除包含NA值的行或列。如果为TRUE,则在计算距离之前将删除包含NA值的行或列;如果为FALSE,则保留包含NA值的行或列。默认值为FALSE。

  • ...:其他参数,用于传递给底层的距离计算函数。可以根据具体需要传递其他参数。

3、举例

library(vegan)

# 计算欧氏距离
dist_matrix <- vegdist(data_matrix, method = "euclidean")

# 计算Bray-Curtis距离
dist_matrix <- vegdist(data_matrix, method = "bray")

# 计算Jaccard距离
dist_matrix <- vegdist(data_matrix, method = "jaccard")

# 其他距离方法参考文档以获得更多选项

注:后面几个参数不常用,data_matrix和 method为必填项。

注意事项:

  • 使用前确保已经安装并加载了vegan包。
  • 不同的距离方法适用于不同的数据类型和分析目的,选择适合你研究的距离方法。
  • 可以通过查看函数文档或使用?vegdist命令来获取更多信息和参数选项。

4、method部分补充 

这些是在生态学和生物统计学中常用的不同距离或相似性指数,用于衡量样本或群落之间的差异或相似性。以下是对这些指数的简要解释:

1.Manhattan Distance:曼哈顿距离,也称为城市街区距离,是两个点之间的绝对距离。
2.Euclidean Distance:欧氏距离,是两个点之间的直线距离。
3.Canberra Distance:坎贝拉距离,用于衡量两个样本之间的相似性,特别适用于高维数据。
4.Clark Distance:克拉克距离,一种特定的相似性指数,用于衡量样本之间的差异。
5.Bray-Curtis Distance:Bray-Curtis距离,用于衡量两个样本之间的相对差异,通常用于生态学中的物种组成数据。
6.Kulczynski Distance:Kulczynski距离,用于比较两个样本之间的相似性或差异。
7.Jaccard Distance:Jaccard距离,用于衡量两个样本之间的相似性,通常用于存在-缺失数据。
8.Gower Distance:Gower距离,用于比较样本之间的相似性,适用于混合数据类型。
9.AltGower Distance:另一种形式的Gower距离,适用于混合数据类型。
10.Morisita Distance:Morisita距离,用于衡量样本之间的相似性,特别适用于物种丰富度数据。
11.Horn Distance:Horn距离,用于比较两个样本之间的相似性或差异。
12.Mountford Distance:Mountford距离,一种用于存在-缺失数据的相似性指数。
13.Raup Distance:Raup距离,用于比较两个样本之间的相似性或差异,特别适用于存在-缺失数据。
14.Binomial Distance:二项式距离,用于衡量两个样本之间的相似性。
15.Chao Distance:Chao距离,一种用于处理样本大小不同的相似性指数。
16.Cao Distance:Cao距离,用于比较两个样本之间的相似性或差异。
17.Mahalanobis Distance:马氏距离,用于衡量多维数据中两个样本之间的距离。
18.Chisq Distance:卡方距离,用于比较两个样本之间的相似性或差异。
19.Chord Distance:Chord距离,用于计算两个样本之间的相似性。
20.Hellinger Distance:Hellinger距离,用于比较两个样本之间的相似性,通常用于频率数据。
21.Aitchison Distance:Aitchison距离,用于处理正组成数据的距离度量。
22.Robust Aitchison Distance:鲁棒Aitchison距离,用于处理非负数据(包括零值)的距离度量,相比标准Aitchison距离更鲁棒。

这些距离或相似性指数根据不同的数据类型、性质和分析目的,选择合适的指数进行数据分析和解释。

参考:vegdist: Dissimilarity Indices for Community Ecologists in vegan: Community Ecology Package

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值