基于vegan包对otu表抽平——微生物抽平

抽平:指按照一定数量或样本序列最低数量,将所有样本的序列随机抽取至统一数据量。

简单地说,就是在不同的样本测序数据有差距的时候,保证样本测序序列的均一性

使用vegan包抽平:

数据准备:准备一个otu表。

输入文件:otu.txt,第一行为样品的名称,第一列为otu名称(名称具有唯一性)

#加载r工作目录,如果文件直接放在了默认的工作目录可以忽略该代码
setwd("D:/r/")
#加载vegan包,如果没有这个包先提前安装
library(vegan)
#加载otu数据表
otu = read.table('otu.txt', header=T, sep="\t", quote = "", row.names=1, comment.char="", stringsAsFactors = FALSE)
#求和查看每个样本的和
colSums(otu)
#抽平并把结果赋值给“otu_Flattening”
otu_Flattening =as.data.frame(t(rrarefy(t(otu),min(colSums(otu)))))
#查看抽平后的每个样本的和
colSums(otu_Flattening)
#将抽平后的otu结果表(otu_Flattening)保存到该工作目录下,并命名为“otu_Results.csv”
write.table(otu_Flattening, file="otu_Results.csv",sep =",", quote=FALSE)

otu抽平步骤

<think>嗯,用户之前问过关于扩增子数据处理中先过滤还是先的问题,现在他们想知道phyloseq中哪个函数可以用于。首先,我需要确认他们是否已经了解的概念,但根据之前的对话,他们应该对的目的和方法有一定了解。 用户的问题很具体,直接指向phyloseq的函数。我需要回忆一下phyloseq的文档,通常对应的是rarefaction,所以可能相关的函数是rarefy_even_depth。不过要确认是否正确,有没有其他函数可能涉及。比如,有没有类似rarefy或者其他的函数名? 然后,我需要确保这个函数的使用方法,是否需要特定的参数,比如设置的序列数,如何处理达不到这个深度的样本等等。可能用户在使用时需要注意样本的测序深度是否足够,如果某些样本的序列数低于阈值,这些样本可能会被排除,这一点需要提醒用户。 另外,用户可能在使用phyloseq时已经有了一些数据对象,比如phyloseq对象OTU和样本数据。需要说明如何将phyloseq对象传递给这个函数,并解释输出的结果。可能还需要提到的争议,比如是否推荐使用,或者有没有替代方法,但用户的问题集中在函数本身,所以这部分可能简要提及,但重点还是函数的用法。 还要注意用户是否需要示例代码,或者参数的具体设置,比如设置随机种子以保证结果可重复。可能用户在使用时遇到问题,比如函数报错,需要指导如何处理,比如检查样本的序列数是否都大于等于深度,或者如何设置rngseed参数。 另外,可能需要提到phyloseq的其他相关函数,比如在预处理中的过滤步骤,和的顺序,不过用户之前已经了解过滤和的顺序,所以可能不需要重复,但可以稍微提一下,确保流程正确。 总结来说,回答需要括正确的函数名,基本用法,重要参数,注意事项,以及可能的替代方法或争议点。同时,使用中文清晰解释,结构分明,帮助用户一步步解决问题。</think>在 **phyloseq** 中,**(rarefaction)** 通过函数 `rarefy_even_depth()` 实现。以下是具体用法和注意事项: --- ### **一、核心函数:`rarefy_even_depth()`** #### **功能** - 将样本的测序深度统一到指定阈值(如最小样本序列量或自定义值),通过随机取实现标准化。 - **输入**:phyloseq 对象(需OTU )。 - **输出**:后的新 phyloseq 对象。 #### **基本语法** ```r rarefy_even_depth( physeq, # phyloseq 对象 sample.size = min(sample_sums(physeq)), # 阈值(默认取最小样本总量) replace = FALSE, # 是否允许有放回样(通常为 FALSE) rngseed = 123, # 随机数种子(保证结果可重复) trim_otus = TRUE, # 是否删除后丰度为0的OTU verbose = TRUE # 是否显示过程信息 ) ``` --- ### **二、关键参数说明** 1. **`sample.size`** - 的目标序列数(建议根据数据选择,如 `sample.size = 10000`)。 - **注意**:若样本原始序列数 < `sample.size`,该样本会被剔除(需提前过滤低深度样本)。 2. **`rngseed`** - 设定随机数种子(如 `rngseed = 123`),确保结果可重复。 3. **`trim_otus`** - 若为 `TRUE`,后所有样本中丰度为0的OTU会被删除,减少数据冗余。 --- ### **三、操作示例** #### **1. 数据准备** ```r library(phyloseq) data("GlobalPatterns") # 示例数据集 physeq <- GlobalPatterns ``` #### **2. 检查样本序列总量** ```r sample_sums(physeq) # 查看各样本原始序列数 ``` #### **3. 执行(以最小样本量为阈值)** ```r set.seed(123) # 可选:全局设定随机种子 physeq_rarefied <- rarefy_even_depth(physeq, rngseed = 123, verbose = TRUE) ``` #### **4. 验证结果** ```r sample_sums(physeq_rarefied) # 所有样本序列数应等于目标值 ``` --- ### **四、注意事项** 1. **样本剔除风险** - 若部分样本原始序列数 < `sample.size`,这些样本会被自动移除(可通过 `prune_samples()` 提前过滤)。 2. **争议** - 会丢弃数据且依赖随机样,可能引入偏差。替代方案括: - **DESeq2**:基于方差稳定标准化(`phyloseq_to_deseq2()`)。 - **CSS标准化**:使用 `metagenomeSeq` 的 `cumNormMat()`。 3. **流程顺序** - **建议先过滤低丰度OTU,再**(参考前序问题解答),避免噪声干扰。 --- ### **五、替代函数(扩展)** - **`rarefy()`**(来自 `vegan` ): 适用于计算多样性指数的理论期望值,但不直接修改 OTU 。 --- ### **总结** - **核心函数**:`rarefy_even_depth()` 是 phyloseq 中实现的标准方法。 - **关键步骤**:设定 `sample.size` 和 `rngseed`,注意低深度样本的过滤。 - **替代方案**:根据研究目标选择是否,或结合其他标准化方法。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

生态笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值