linux终端前面显示base和不显示base

问题描述:前提是系统里装了anaconda3,有时候两个服务器之间相连长时间没使用或者访问时候前面没显示base。。

解决:我们在做深度学习时需要一个环境,如果前面没显示base的话,你直接conda activate是激活不了我们需要跑模型已装的环境,输入conda activate,然后前面base主环境激活,当然也可以退出

##激活base主环境
wlc2021388321@hzsfxy-A100-40:/data/WLC$ conda activate
(base) wlc2021388321@hzsfxy-A100-40:/data/WLC$
##查看当前有多少环境
(base) wlc2021388321@hzsfxy-A100-40:/data/WLC$ conda env lst

usage: conda-env [-h] {create,export,list,remove,update,config} ...
conda-env: error: argument {create,export,list,remove,update,config}: invalid choice: 'lst' (choose from 'create', 'export', 'list', 'remove', 'update', 'config')
(base) wlc2021388321@hzsfxy-A100-40:/data/WLC$ conda env list
# conda environments:
#一下是所有环境
base                  *  /data/WLC/anaconda3
pythorch                 /data/WLC/anaconda3/envs/pythorch
pytorch                  /data/WLC/anaconda3/envs/pytorch
pytorch3.7               /data/WLC/anaconda3/envs/pytorch3.7

(base) wlc2021388321@hzsfxy-A100-40:/data/WLC$
##准备退出
(base) wlc2021388321@hzsfxy-A100-40:/data/WLC$ conda deactivate
##已退出
wlc2021388321@hzsfxy-A100-40:/data/WLC$

补充如果你想一直想显示base主环境需要设置:

可以通过修改conda的配置,conda config --show是查看配置信息,输进去显示很长,对应部分截图如下,可以看到默认自启
在这里插入图片描述

取消自动激活

conda config --set auto_activate_base false

设置自动激活

conda config --set auto_activate_base true

### 解释 (base) 环境 当在 Linux 终端看到 `(base)` 提示符时,这意味着当前正在使用 Anaconda 或 Miniconda 的基础环境。这个默认的基础环境是在安装 Conda 时自动创建的[^1]。 ### 如何管理 Conda 虚拟环境 为了更好地管理切换同的 Python 版本或依赖库集合,建议创建独立的 Conda 环境而是一直使用 `base` 环境。以下是具体方法: #### 查看现有环境列表 可以使用命令来查看已有的所有 Conda 环境及其状态: ```bash conda env list ``` #### 创建新的 Conda 环境 通过指定名称所需的 Python 版本来创建一个新的环境: ```bash conda create --name myenv python=3.8 ``` 这将建立名为 `myenv` 并基于 Python 3.8 的新环境。 #### 激活特定环境 要激活某个特定的 Conda 环境以便在其内部工作,可执行如下指令: ```bash conda activate myenv ``` 此时终端提示符前应显示所选环境的名字而非之前的 `(base)`。 #### 关闭当前活动环境 如果想返回到初始的状态或者停用任何活跃中的自定义环境,则只需运行: ```bash conda deactivate ``` 这样就可以回到最初的 `(base)` 状态了。 #### 删除再需要的环境 对于那些已经完成使命或是再使用的环境,可以通过下面这条语句彻底移除它们: ```bash conda remove --name old_env --all ``` ### 配置构建环境的最佳实践 考虑到跨平台兼容性一致性,在 Linux 上进行软件包打包时推荐采用 PyPA 推出的 manylinux Docker 映像作为起点。可以从官方提供的基本映像出发,进一步安装 PyInstaller 及其他必要的组件,从而获得支持大多数 Linux 发行版版本组合的理想化构建镜像[^2]。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值