Torch 论文复现:卷积注意力模块 CBAM

CBAM 全称 Convolutional Block Attention Module,论文地址:CBAM

与 SE Block 相比,CBAM 对分类网络的 Top-1 Error 约有 0.2% 的改进;对 Top-5 Error 约有 0.1% 的改进

但是 SE Block 的不足之处在于只有通道注意力,没有空间注意力,用在目标检测这种定位任务上效果可想而知

CBAM 作为 通道注意力 + 空间注意力 的模块,用在目标检测任务上的效果是非常惊艳的:

  • mAP@.5:约有 2.0% 的改进
  • mAP@.75:约有 2.0% 的改进
  • mAP@[.5, .95]:约有 1.0% 的改进

通道注意力模块

c462b999e8b34ec290e18df2df0c717e.jpg

这个结构和 SE Block 是比较相似的,不同点在于 SE Block 只使用了平均池化

与 SE Block 相比,CBAM 增加最大池化可以对分类网络的 Top-1 Error、Top-5 Error 产生约 0.5% 的改进

通道注意力模块的运算可用以下公式表示:

gif.latex?M_c%28x%29%3Dsigmoid%28MLP%28AvgPool%28x%29%29+MLP%28MaxPool%28x%29%29%29

运算流程为:将特征图的最大池特征、平均池特征,然后再使用全连接层 (等价于 1×1 卷积,参考 Torch 二维多通道卷积运算方式) 分别运算,求和之后使用 sigmoid 函数得到通道注意力 (值域为 [0, 1])

空间注意力模块

a688f0f23b624308bec97e1e2a8e7ba1.png

空间注意力模块则是沿着通道维度取最大值、平均值,拼接为二通道的特征图,再使用 7×7 卷积提取,使用 sigmoid 函数后得到空间注意力 (值域为 [0, 1])

CBAM 复现

2d66683f902f4908b40b5eea9d421dac.png

对于 [c, h, w] 的特征图,通道注意力的 shape 为 [c, 1, 1],空间注意力的 shape 为 [1, h, w]

而通道注意力和空间注意力的值域都是 [0, 1],用作特征图的门控因子与特征图相乘

class CBAM(nn.Module):
    ''' Convolutional Block Attention Module
        c1: 输入通道数
        r: 全连接层隐藏层通道缩放比
        k: 空间注意力模块卷积核大小'''

    def __init__(self, c1, r=16, k=7):
        super(CBAM, self).__init__()
        c_ = int(c1 // r)
        self.mlp = nn.Sequential(
            nn.Conv2d(c1, c_, kernel_size=1),
            nn.Conv2d(c_, c1, kernel_size=1)
        )
        assert k & 1, '卷积核尺寸需为奇数'
        self.conv = nn.Conv2d(2, 1, kernel_size=k, padding=k // 2)

    def forward(self, x):
        # Channel Attention
        ca = torch.cat([
            F.adaptive_avg_pool2d(x, 1),
            F.adaptive_max_pool2d(x, 1)
        ], dim=3)
        ca = torch.sigmoid(self.mlp(ca).sum(dim=3, keepdims=True))
        x *= ca
        # Spatial Attention
        sa = torch.sigmoid(self.conv(torch.cat([
            x.mean(dim=1, keepdims=True),
            x.max(dim=1, keepdims=True)[0]
        ], dim=1)))
        x *= sa
        return x

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
CBAM(Convolutional Block Attention Module)是一种用于图像分类和目标检测任务的注意力机制模块。下面是使用PyTorchCBAM注意力机制的示例代码: ```python import torch import torch.nn as nn class ChannelAttention(nn.Module): def __init__(self, in_planes, ratio=16): super(ChannelAttention, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.max_pool = nn.AdaptiveMaxPool2d(1) self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False) self.relu1 = nn.ReLU() self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x)))) max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x)))) out = avg_out + max_out return self.sigmoid(out) class SpatialAttention(nn.Module): def __init__(self, kernel_size=7): super(SpatialAttention, self).__init__() assert kernel_size in (3, 7), 'kernel size must be 3 or 7' padding = 3 if kernel_size == 7 else 1 self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False) self.sigmoid = nn.Sigmoid() def forward(self, x): avg_out = torch.mean(x, dim=1, keepdim=True) max_out, _ = torch.max(x, dim=1, keepdim=True) x = torch.cat([avg_out, max_out], dim=1) x = self.conv1(x) return self.sigmoid(x) class CBAM(nn.Module): def __init__(self, in_planes, ratio=16, kernel_size=7): super(CBAM, self).__init__() self.ca = ChannelAttention(in_planes, ratio) self.sa = SpatialAttention(kernel_size) def forward(self, x): out = self.ca(x) * x out = self.sa(out) * out return out # 使用示例 model = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1), CBAM(64), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), # ... ) ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荷碧TongZJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值