向量点积的两种形式等价的证明

证明 1 1 1

对于三维向量 a ⃗ = ( a x , a y , a z ) \vec{a}=(a_x,a_y,a_z) a =(ax,ay,az)和三维向量 b ⃗ = ( b x , b y , b z ) \vec{b}=(b_x,b_y,b_z) b =(bx,by,bz),若它们在三维空间中的夹角为 θ ( 0 ≤ θ ≤ π ) \theta(0\leq \theta \leq \pi) θ(0θπ),由 b ⃗ \vec{b} b 指向 a ⃗ \vec{a} a 的向量为 A B ⃗ \vec{AB} AB ,那么由余弦定理得:
∣ A B ⃗ ∣ 2 = ∣ a ⃗ ∣ 2 + ∣ b ⃗ ∣ 2 − 2 ⋅ ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ ⋅ cos ⁡ θ {|\vec{AB}|}^2={|\vec{a}|}^2+{|\vec{b}|}^2-2\cdot|\vec{a}|\cdot|\vec{b}|\cdot\cos{\theta} AB 2=a 2+b 22a b cosθ
因为如下式子成立:
∣ A B ⃗ ∣ = ( a x − b x ) 2 + ( a y − b y ) 2 + ( a z − b z ) 2 |\vec{AB}|=\sqrt{ {(a_x-b_x)}^2+{(a_y-b_y)}^2+{(a_z-b_z)}^2} AB =(axbx)2+(ayby)2+(azbz)2

∣ a ⃗ ∣ = a x 2 + a y 2 + a z 2 {|\vec{a}|}=\sqrt{ {a_x}^2+{a_y}^2+{a_z}^2} a =ax2+ay2+az2

∣ b ⃗ ∣ = b x 2 + b y 2 + b z 2 |\vec{b}|=\sqrt{ {b_x}^2+{b_y}^2+{b_z}^2} b =b

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值