向量点积的两种形式等价的证明

证明 1 1 1

对于三维向量 a ⃗ = ( a x , a y , a z ) \vec{a}=(a_x,a_y,a_z) a =(ax,ay,az)和三维向量 b ⃗ = ( b x , b y , b z ) \vec{b}=(b_x,b_y,b_z) b =(bx,by,bz),若它们在三维空间中的夹角为 θ ( 0 ≤ θ ≤ π ) \theta(0\leq \theta \leq \pi) θ(0θπ),由 b ⃗ \vec{b} b 指向 a ⃗ \vec{a} a 的向量为 A B ⃗ \vec{AB} AB ,那么由余弦定理得:
∣ A B ⃗ ∣ 2 = ∣ a ⃗ ∣ 2 + ∣ b ⃗ ∣ 2 − 2 ⋅ ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ ⋅ cos ⁡ θ {|\vec{AB}|}^2={|\vec{a}|}^2+{|\vec{b}|}^2-2\cdot|\vec{a}|\cdot|\vec{b}|\cdot\cos{\theta} AB 2=a 2+b 22a b cosθ
因为如下式子成立:
∣ A B ⃗ ∣ = ( a x − b x ) 2 + ( a y − b y ) 2 + ( a z − b z ) 2 |\vec{AB}|=\sqrt{ {(a_x-b_x)}^2+{(a_y-b_y)}^2+{(a_z-b_z)}^2} AB =(axbx)2+(ayby)2+(azbz)2

∣ a ⃗ ∣ = a x 2 + a y 2 + a z 2 {|\vec{a}|}=\sqrt{ {a_x}^2+{a_y}^2+{a_z}^2} a =ax2+ay2+az2

∣ b ⃗ ∣ = b x 2 + b y 2 + b z 2 |\vec{b}|=\sqrt{ {b_x}^2+{b_y}^2+{b_z}^2} b =b

### 数字图像处理中棋盘距离与L无穷范数的等价性 在数字图像处理领域,棋盘距离(Chebyshev distance)和L∞范数(L infinity norm)之间存在等价关系。这种等价性可以通过严格的数学推导得到验证。 #### 定义说明 - **棋盘距离**定义为两个 \( A(x_1, y_1) \) 和 \( B(x_2, y_2) \) 之间的最大坐标差绝对值: \[ D_{chess}(A,B) = \max(|x_1 - x_2|, |y_1 - y_2|) \] - **L∞范数**表示向量各分量的最大绝对值: \[ ||v||_\infty = \max_i{|v_i|} \] 其中 \( v=(v_1,v_2,...,v_n)^T \),对于二维情况下的 \( P(x,y) \),其对应的向量形式为 \( V_P=[x,y]^T \)[^2]。 #### 等价证明 考虑任意两 \( A(x_1, y_1), B(x_2, y_2) \): 1. 计算两者间基于坐标的差异: 设 \( Δ_x=|x_1-x_2| \), \( Δ_y=|y_1-y_2| \) 2. 对于这两个数值应用上述两种度量方式的结果分别是: - 棋盘距离: \( D_{chess}= \max(Δ_x, Δ_y)\) - L∞范数: \( ||V_A-V_B||_\infty=\max(|Δ_x|,|Δ_y|)=\max(Δ_x, Δ_y)\) 由此可见,在任何情况下这两种测量方法给出相同的结果,从而证明了它们的一致性和互换可能性。 ```python def chebyshev_distance(point_a, point_b): """Calculate the Chebyshev Distance between two points.""" delta_x = abs(point_a[0] - point_b[0]) delta_y = abs(point_a[1] - point_b[1]) return max(delta_x, delta_y) def l_infinity_norm(vector): """Calculate the L-infinity Norm of a vector.""" return max(abs(component) for component in vector) # Example usage: point_a = (3, 7) point_b = (-1, 4) print(f"Chessboard Distance: {chebyshev_distance(point_a, point_b)}") vector_ab = [point_a[i]-point_b[i] for i in range(len(point_a))] print(f"L-Infinity Norm: {l_infinity_norm(vector_ab)}") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值