证明 1 1 1
对于三维向量 a ⃗ = ( a x , a y , a z ) \vec{a}=(a_x,a_y,a_z) a=(ax,ay,az)和三维向量 b ⃗ = ( b x , b y , b z ) \vec{b}=(b_x,b_y,b_z) b=(bx,by,bz),若它们在三维空间中的夹角为 θ ( 0 ≤ θ ≤ π ) \theta(0\leq \theta \leq \pi) θ(0≤θ≤π),由 b ⃗ \vec{b} b指向 a ⃗ \vec{a} a的向量为 A B ⃗ \vec{AB} AB,那么由余弦定理得:
∣ A B ⃗ ∣ 2 = ∣ a ⃗ ∣ 2 + ∣ b ⃗ ∣ 2 − 2 ⋅ ∣ a ⃗ ∣ ⋅ ∣ b ⃗ ∣ ⋅ cos θ {|\vec{AB}|}^2={|\vec{a}|}^2+{|\vec{b}|}^2-2\cdot|\vec{a}|\cdot|\vec{b}|\cdot\cos{\theta} ∣AB∣2=∣a∣2+∣b∣2−2⋅∣a∣⋅∣b∣⋅cosθ
因为如下式子成立:
∣ A B ⃗ ∣ = ( a x − b x ) 2 + ( a y − b y ) 2 + ( a z − b z ) 2 |\vec{AB}|=\sqrt{
{(a_x-b_x)}^2+{(a_y-b_y)}^2+{(a_z-b_z)}^2} ∣AB∣=(ax−bx)2+(ay−by)2+(az−bz)2
∣ a ⃗ ∣ = a x 2 + a y 2 + a z 2 {|\vec{a}|}=\sqrt{ {a_x}^2+{a_y}^2+{a_z}^2} ∣a∣=ax2+ay2+az2
∣ b ⃗ ∣ = b x 2 + b y 2 + b z 2 |\vec{b}|=\sqrt{ {b_x}^2+{b_y}^2+{b_z}^2} ∣b∣=b