目录
🔖 标签
#RAG #大语言模型 #人工智能 #知识管理 #自然语言处理
🌟 前言
🏗️ 技术背景与价值
检索增强生成(Retrieval-Augmented Generation)是解决大语言模型(LLM)知识固化问题的革命性技术。2023年Gartner报告指出,采用RAG的企业知识问答系统准确率提升40%,推理成本降低60%。
🩹 当前技术痛点
- 知识过时:LLM训练数据无法实时更新(如ChatGPT-4知识截止2023年)
- 幻觉问题:模型生成虚构事实(医疗领域错误率高达15%)
- 领域知识缺乏:通用模型难以掌握专业领域细节
- 溯源困难:生成结果无法验证信息来源
🛠️ 解决方案概述
RAG通过三阶段流程解决问题:
- 检索:从知识库实时获取相关信息
- 增强:将检索结果注入LLM上下文
- 生成:基
订阅专栏 解锁全文
111

被折叠的 条评论
为什么被折叠?



