【RAG技术权威指南】从原理到企业级应用实践


🔖 标签

#RAG #大语言模型 #人工智能 #知识管理 #自然语言处理


🌟 前言

🏗️ 技术背景与价值

检索增强生成(Retrieval-Augmented Generation)是解决大语言模型(LLM)知识固化问题的革命性技术。2023年Gartner报告指出,采用RAG的企业知识问答系统准确率提升40%,推理成本降低60%。

🩹 当前技术痛点

  1. 知识过时:LLM训练数据无法实时更新(如ChatGPT-4知识截止2023年)
  2. 幻觉问题:模型生成虚构事实(医疗领域错误率高达15%)
  3. 领域知识缺乏:通用模型难以掌握专业领域细节
  4. 溯源困难:生成结果无法验证信息来源

🛠️ 解决方案概述

RAG通过三阶段流程解决问题:

  1. 检索:从知识库实时获取相关信息
  2. 增强:将检索结果注入LLM上下文
  3. 生成:基
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

满怀1015

你的鼓励是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值