近年来,随着自动化水平、人工智能水平和现代传感器技术的发展和成熟,为基于智能化的机械故障检测创造了良好的条件。大致可以分为信号获取、信号处理、特征提取和故障分类这四个主要部分,具体内容如下:
2.1 基于各种信号检测技术研究
利用先进的传感技术获取响应信号表征机械装备的运行状态,是机械故障诊断的前提。由于机械装备故障信息常常表现在动力学、声学、摩擦学、热力学等多物理场,国内外学者已经开始从不同物理场获取响应信号开展故障诊断研究。
2.1.1 基于振动信号检测技术
机械振动现象虽然普遍,但很难用感官感受,只有用现代仪器测量,对设备状态进行检测和诊断,才能揭示振动信号所包含的信息,振动数据可有效反映机器状态,且对设备状态变化敏感,在当前故障诊断领域中,使用振动信号进行故障诊断已被成熟应用。He等人利用振动信号监测滚动轴承的运行状态并提取了轴承的特征,结合极限学习机对轴承进行故障诊断。Rmili等人通过采集刀具车削中的振动信号并提取了刀具磨损特征,采用其作为刀具退化程度评估指标识别出了刀具在车削中磨损变化情况。朱静等人通过对行星齿轮箱的振动信号进行降噪以突出故障信号特征,最后进行包络谱分析以提取行星齿轮箱的故障特征频率。殷红等人[19]提出构建一种传感器优化布置的齿轮箱轴承故障特征提取方法,首先将采集的振动信号进行奇异值降噪,然后对降噪后的信号进行基于方差贡献率的信息融合并进行变分模态分解,最后选取信息熵最小本征模态分量进行Teager能量谱分析,提取滚动轴承的故障特征。
为了保证采集振动信号不失真,通常要求所用的加速度传感器与被测物体刚性接触,则需要在待测机器的外壳体上穿孔安装或者粘贴,频繁地贴合安装加速度传感器,不仅严重影响了工厂的产线流转效率,而且容易对这类高精度的加速度传感器造成损伤。此外,加速度传感器只能检测传感器接触地方的振动,不能检测到中高频信号。
2.1.2 基于声信号检测技术
在机械设备运转时,由于部件之间的摩擦力、撞击力或平衡力等因素使机械部件产生振动进而产生声音(又称为机械噪声),这些噪声中往往带有大量设备运行状态的信息。Shi等人将声信号作为铣削加工中的监测信号,通过对声信号进行去噪后再提取其磨损信息,通过试验数据分析后,铣削中的声信号的有效频段在1100 Hz频段周围,其中故障信号在750 Hz频段,通过提取这两个频段内的有效的刀具磨损特征,识别了破损刀具。刘力源针对电机声信号的统计特性及其人工质检的特点,利用声传感器技术代替人耳实现对电机声音信号的采集。为了突出特征差异的绝对化,采用主成分分析方法对电机的声信号进行数据压缩、维数来实现电机声信号提取特征,利用小波包分解和以归一化能量构建特征矩阵,最终输入支持向量机实现对异音电机的检测。刘育玮等人提出基于声信号的故障检测可以通过非接触式的传感器采集部件工作的声音信号,经过处理后可以有效的表征部件的工作状态,声信号开始用于火箭发动机和其他零部件的故障检测,并取得一些研究成果。杜京义等人分析异步电机运行声音包含着许多重要信息,对声学特征有效提取可用于故障检测,提出一种基于可听声信号的异步电机故障诊断方法。
声音信号具有丰富的信息量,在很多视觉、触觉、嗅觉不合适的场合下,具有独特的优势,声音信号通常被认为与振动信号具有较大的相关性,由于声音的非接触性,不需要对传感器进行粘贴和接触到待测机器,避免了振动信号采集数据的困难,更重要的是不影响设备正常工作,且具有速度快、效率高等优势。此外,传声器可以检测到不同部位的信号、能够测到气流噪声。但是在一般情况下,声音容易受到外界噪声的干扰,使得采集的数据受到污染,增加了后期信号处理的难度。
2.1.3 声发射检测技术
声发射是材料在破坏过程中能量以弹性波的形式急剧释放产生的,声发射监测技术是借助灵敏的传感器将弹性波转化为可采集的电信号,再通过放大器、滤波、信号处理,最后对所采集的信号进行分析处理来判断声发射源存在的缺陷。但是,声发射技术也存在一些缺陷:声发射传感器的安装位置困难;由于声发射传感器的有效频段较高,所需的采集设备成本较高。
2.1.4 超声检测技术
超声检测是一种重要的无损检测技术,超声波在介质中的传播特性,如波速、衰减、吸收等都与介质的各种宏观的非声学的物理量有着密切的关系,通过各种对超声传播特性中特征信息量的提取,可实现非声量检测,还能对物体的缺陷进行检测和探伤,对材料进行物性评价。
综上所述,国内外学者采用不同物理信号特点对机械装备进行监测,取得了丰硕的成果,为机械智能诊断理论与方法研究奠定了坚实的基础。
2.2 信号处理
信号处理技术的发展与现代传感技术的进步密切相关,传感器不仅能采集工业缝纫机故障信号,而且同时也采集了一切的干扰信号。如何准确提取设备故障信息、准确定位故障和排除干扰信号一直困扰众多的研究人员。因此,信号处理技术是工业缝纫机质检的关键技术之一。不同设备由于其结构和工作状态的不同,产生的信号也是截然不同的,而且当前不同信号处理方法也是有各自的局限性,下面详细介绍应用于状态监测或故障诊断中一些常用的信号处理方法。
2.2.1 经验模态分解
经验模态分解(Empirical Mode Decomposition, EMD)是由美国国家宇航局的华裔科学家HUANG等人于1998年提出的一种新的处理非平稳信号的方法——希尔伯特-黄变换的重要组成部分。基于EMD的时频分析方法既适合于非线性、非平稳信号的分析,也适合于线性、平稳信号的分析,并且对线性、平稳信号的分析比其他时频分析方法能更好地反映信号的物理意义,该方法在旋转设备故障诊断中得到了广泛的应用。An等人结合EMD和希尔伯特变换方法,直驱式风电机组故障进行了诊断。田晶等人将集合经验模态分解和空域相关降噪相结合,采用峭度-度量因子准则筛选出正确的分量,重构后提取轴承故障特征频率。该方法能有效克服模态混淆,并对故障噪声抑制效果明显。
信号在使用EMD后得到的固有模态函数(Intrinsic Mode Function, IMF)中存在模态混叠,即两个属于不同模态的信号都归于一个IMF中造成了混叠,在具体分析各个IMF的时候,引入了不相关的信息导致准确性不高;另外IMF中还可能存在端点效应,由于在EMD分解中涉及到了信号包络,在信号截断处,分离出来的模态发生了畸变,当信号数据点数较多时,这个影响还比较弱,反之则会严重影响信号波形;除了上述两个缺点之外,IMF还存在虚假模态的缺点。由于噪声的存在,EMD在一次次的迭代过程中,模态误差不断累计,导致剩余信号发生极大的变化,出现了虚假模态,严重影响判断。
2.2.2 集合经验模态分解
集合经验模式分解(Ensemble Empirical Mode Decomposition, EEMD)是 HUANG等人提出的一种自适应信号分解方法。类似于 EMD,EEMD可以根据信号本身将信号分解为一系列从高到低的频带。因此,EEMD 可以用于分离信号的不同频率分量,并去除混入信号中的非高斯噪声,同时,EEMD 还是一种噪声辅助数据分析方法,通过在信号中添加白噪声,可以抑制由EMD引起的模式混合现象。与EMD相比,EEMD获得的 IMF可以更好地揭示信号的内在特征。近年来,EEMD 已广泛应用于机械故障诊断领域。
在EEMD中,加白噪声后的信号独立地被分解,使得每个信号分解后可能产生不同数量的IMF,导致集合平均时IMF分量对齐较为困难。此外,添加的白噪声幅值和迭代次数依靠人为经验设置,无法克服模态混叠。集总平均次数一般在几百次以上,非常耗时。虽然增加集合平均次数可降低重构误差,但这是以增加计算成本为代价,且有限次数的集合平均并不能完全消除白噪声,导致算法重构误差大,分解完备性差。
2.2.3 小波变换
小波变换(Wavelet Transform, WT)是法国工程师J.Morlet于20世纪70年代提出的,该方法一出现便在信号处理领域中得到了广泛的研究和应用。小波变换主要将所有信号分解为一系列“基本函数”,经过小波变换之后可以得到信号的局部和整体的特性。Tarak等人利用连续小波变换和盲源分离算法从原监测信号中提取出了有关刀具磨损的相关信息,并利用非线性回归函数估计刀具剩余寿命。黄鑫提出了一种基于卷积神经网络与离散小波变换的行星齿轮箱故障诊断方法,可对信号进行频域上的分解,并可对不同频带的信号进行分析。
如何选取合适的小波基在处理不同类型的信号上至关重要,根据信号自动选择合适的基函数是目前主要难题。其次,合适分解层数和分解尺度也对小波变换的分解结果过存在着较大的影响。
2.2.4 经验小波变换
经验小波变换(Empirical Wavelet Transform, EWT)是Gilles于2013年提出的一种以小波变换为基础并且能够自适应构建小波滤波器组的信号分解方法。该方法将小波变换和经验模态之间的优点结合,使用具有信号自身时间尺度特性构建小波滤波器组,克服了小波变换中需要优先选择合适的小波基的不足之处等。一经提出就应用在设备故障诊断中。Chen等人利用经验小波变换从风力发电机轴承振动信号中提取出了故障特征并识别了故障类型。Zhao等人将EWT和多尺度熵联合,从电力变压器振动信号中提取出了故障特征。
经验小波变换虽然能够构建自适应小波滤波器组,但是这些小波滤波器组主要取决于预先对原信号频谱的分割是否合适。EWT的关键是如何根据不同类型的信号合理的划分原信号频谱,使得分割后的各段子信号之间独立性较强。目前普遍采用极值点进行分割,并且按照递减顺序进行依次提取出固有模态函数,但是在处理调频信号时会出现属于同一个调频信号的一些旁瓣也会独立提取出来造成模态裂解,如果设置间隔变宽那么其他频段的信号会发生模态混叠。基于以上描述,如何更加合理并且自适应分解原信号的频谱还依然需要进一步的研究。
2.2.5 变分模态分解
变分模态分解(Varational Mode Decomposition, VMD)是Dragomiretskiy等人在2014年提出一种自适应、完全非递归的模态变分和信号处理的方法,具有可以确定模态分解个数的优点,其自适应性表现在根据实际情况确定所给序列的模态分解个数,随后的搜索和求解过程中可以自适应地匹配每种模态的中心频率和有限带宽,并且可以实现IMF的有效分离、信号的频域划分,进而得到给定信号的有效分解成分,最终获得变分问题的最优解。Bi等人首先采用基于递归形式的改进VMD方法自适应处理发动机运行中的振动信号,随后在功率谱上来分析发动机的各种故障,将改进VMD、EMD和VMD进行对比结果表明其不仅仅可以区分出发动机的不同状态并且其具有更好的精度、效率和稳定性。Zhang等人提出了基于VMD-遗传算法-人工神经网络的短期风速预测模型,利用VMD分解风速信号,获取不同的尺度波动或趋势,充分挖掘风速的潜在信息,获得更准确的预测结果。
VMD方法克服了EMD方法存在端点效应和模态分量混叠的问题(通过控制带宽来避免混叠现象),具有更坚实的数学理论基础;可以降低复杂度高和非线性强的时间序列非平稳性,分解获得包含多个不同频率尺度且相对平稳的子序列,适用于非平稳性的序列。但是选择合适的分解层数K值对分解是否完全至关重要,K取值过大会导致模态裂解造成过分解;K取值过小则会将多个模态杂糅在一起或者遗漏有效模态造成欠分解。同时,随着K值的增大,完成整个计算的时间也显著增加。
2.3 特征提取
以信号处理技术为基础的特征提取是实现机械故障信息表征的主要途径。当机械装备出现故障时,通常在时域、频域和时频域都有不同程度的体现,国内外学者针对不同域机械故障信息提取问题展开了丰富的研究工作。Mark等人使用时域同步平均技术消除齿轮啮合振动中的谐波影响,进而实现时域信息的特征提取。Chen等人出基于数学形态学的信号处理方法并用于轴承健康状态的特征提取。He等人提出基于离散频谱相关技术的阶次跟踪方法,实现变工况下风机齿轮箱的故障特征提取。Fan等人基于旋转机械信号在频域稀疏的特性,提出基于稀疏分解的齿轮箱故障特征方法。Shi等人提出基于逐步解调变换的时频信息特征提取方法。
总结发现,国内外学者在基于信号处理技术的机械故障特征提取方面做出了令人欣喜的成果,这些成果极大地增强了强噪声干扰、多工况影响下识别机械故障的可能性,但现有研究大多仍停留在实验验证阶段,实用化的特征提取方法有限。
2.4 故障分类
K近邻算法(K Nearest Neighbor, KNN)是故障分类问题中最为常用的算法之一,原理较为简单:首先,根据已知类别的训练样本与待分类样本之间的最小距离差,搜索待分类样本的K个最近的“邻居”;然后根据这最近的K个“邻居”做出样本类别的判断,以此便能实现机械设备损伤故障类型的判断。
支持向量机(Support Vector Machine, SVM)是一种相对较新的机器学习算法,SVM 基于统计学中的结构风险最小化原则,建立数据集之间的最优分离超平面,并使不同类型样本间的分类间隔尽可能宽,即最大化超平面两侧的空白区域面积,以保证高分类精度。
人工神经网络(Artificial Neural Network, ANN)能充分逼近复杂的非线性关系,是建立滚动轴承故障诊断模型的有效途径。诊断模型的原理就是将用故障特征作为学习样本的神经网络与良好工作状态数据训练的网络进行对比,从而达到故障诊断的目的。
深度学习(Deep Learning, DL)是一种基于对数据进行表征学习的方法,通过逐层堆叠非线性信息处理模块来提取数据背后的特征信息。深度学习提供了一种在多个抽象层次自动学习特性的有效方法,允许直接从数据中学习复杂的输入输出函数,为旋转机械故障诊断发展提供了一个全新的思路与发展方向。
参考文献
[1] He Cheng,Wu Tao,Gu Runwei, et al. Rolling bearing fault diagnosis based on composite multiscale permutation entropy and reverse cognitive fruit fly optimization algorithm – Extreme learning machine - ScienceDirect[J]. Measurement, 2020.
[2] RMILI W, OUAHABI A, SERRA R, et al. An automatic system based on vibratory analysis for cutting tool wear monitoring[J]. Measurement, 2016, 77: 117-123.
[3] 朱静,邓艾东,邓敏强,程强,刘洋. 基于MED和自适应VMD的行星齿轮箱故障诊断方法[J]. 东南大学学报(自然科学版),2020,50(04):698-704.
[4] 殷红,陈强,彭珍瑞. 传感器优化布置的齿轮箱轴承故障特征提取[J]. 噪声与振动控制,2020,40(04):67-72+154.
[5] SHI X H, WANG R. Cutting sound signal processing for tool breakage detection in face milling based on empirical mode decomposition and independent component analysis[J]. Journal of Vibration and Control, 2015, 21(16): 3348-3358.
[6] 刘力源. 基于机器学习方法的电机异音检测研究[D].五邑大学,2014.
[7] 刘育玮,张航,张振臻,杨述明,程玉强. 基于声信号的故障检测方法在运载火箭上的应用[J]. 火箭推进,2021,47(03):1-7.
[8] 杜京义,杨宁,荣相. 基于Gammatone倒谱系数的异步电机故障诊断方法研究[J]. 机床与液压,2021,(02):52-56+61.
[9] T. Touret,C. Changenet,F. Ville,M. Lalmi,S. Becquerelle. On the use of temperature for online condition monitoring of geared systems – A review[J]. Mechanical Systems and Signal Processing,2018,101:
[10] 李刚,肖繁,刘浩,胡明兵,赵奎. 边坡声发射监测研究综述[J]. 长江科学院院报,2018,35(11):57-62.
[11] 高东岳. 基于机器学习方法的超声导波结构健康监测研究[J]. 纤维复合材料,2020,37(03):3-8.
[12] HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences, 1998, 454(1971): 903-995.
[13] Xueli An,Dongxiang Jiang,Shaohua Li,Minghao Zhao. Application of the ensemble empirical mode decomposition and Hilbert transform to pedestal looseness study of direct-drive wind turbine[J]. Energy,2011,36(9):
[14] 田晶,王英杰,王志,艾延廷,孙丹. 基于EEMD与空域相关降噪的滚动轴承故障诊断方法[J]. 仪器仪表学报,2018,39(07):144-151.
[15] Jiawei Xiang,Yongteng Zhong. A fault detection strategy using the enhancement ensemble empirical mode decomposition and random decrement technique[J]. Microelectronics Reliability,2017,75:
[16] Wei Zuolong,Robbersmyr Kjell Gunnar,Karimi Hamid Reza. An EEMD Aided Comparison of Time Histories and Its Application in Vehicle Safety[J]. IEEE Access,2017,5:
[17] TARAK B, ZERHOUNI N, RECHAK S. Tool wear condition monitoring based on continuous wavelet transform and blind source separation[J]. The International Journal of Advanced Manufacturing Technology, 2018, 97(9-12): 3311-3323.
[18] 黄鑫. 基于卷积神经网络的旋转机械故障特征自动学习与智能诊断方法研究[D].重庆交通大学,2019.
[19] GILLES J. Empirical Wavelet Transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16): 3999-4010.
[20] CHEN J L, PAN J, LI Z P, et al. Generator bearing fault diagnosis for wind turbine via empirical wavelet transform using measured vibration signals[J]. Renewable Energy, 2016, 89: 80-92.
[21] Zhao M , Xu G .Feature extraction of power transformer vibration signals based on empirical wavelet transform and multiscale entropy[J].Iet Science Measurement & Technology, 2018, 12(1):63-71.
[22] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
[23] BI F G, LI X, LIU C C, et al. Knock detection based on the optimized variational mode decomposition[J]. Measurement, 2019, 140: 1-13.
[24] Zhang Y , Pan G , Chen B , et al. Short-term wind speed prediction model based on GA-ANN improved by VMD[J]. Renewable Energy, 2019, 156.
[25] Mark W D . Time-synchronous-averaging of gear-meshing-vibration transducer responses for elimination of harmonic contributions from the mating gear and the gear pair[J]. Mechanical Systems and Signal Processing, 2015, s 62–63:21-29.
[26] Chen Z , Gao N , Sun W , et al. A Signal Based Triangular Structuring Element for Mathematical Morphological Analysis and Its Application in Rolling Element Bearing Fault Diagnosis[J]. Shock and Vibration,2014,(2014-4-1), 2014, 2014(pt.2):1-16.
[27] A G H , A K D , A W L , et al. A novel order tracking method for wind turbine planetary gearbox vibration analysis based on discrete spectrum correction technique[J]. Renewable Energy, 2016, 87:364-375.
[28] A W F , B G C A , B Z K Z A , et al. Sparse representation of transients in wavelet basis and its application in gearbox fault feature extraction - ScienceDirect[J]. Mechanical Systems and Signal Processing, 2015, s 56–57:230-245.
[29] Shi J , Liang M , Necsulescu D S , et al. Generalized stepwise demodulation transform and synchrosqueezing for time–frequency analysis and bearing fault diagnosis[J]. Journal of Sound & Vibration, 2016:202-222.
[30]蔡锷, 李春明, 刘东民,等. 基于局部均值分解和K近邻算法的滚动轴承故障诊断方法. 现代电子技术, 2015, 38(13):3.
[31] 丁世飞,齐丙娟,谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报,2011,40(01):2-10.
[32] Liu R , Yang B , Zio E , et al. Artificial intelligence for fault diagnosis of rotating machinery: A review[J]. Mechanical Systems & Signal Processing, 2018, 108(AUG.):33-47.
[33]沈涛,李舜酩,辛玉. 基于深度学习的旋转机械故障诊断研究综述[J]. 计算机测量与控制,2020,28(09):1-8.
[34] 邓婕,李舜酩. 基于深度学习的故障诊断方法研究综述[J]. 电子测试,2020,(18):43-47+51.