1.4 多元函数微分学

第一章 数学分析

全文均为手敲,如果发现有误,请于评论区交流讨论留言,作者会及时修改

1.4 多元函数微分学

  1. R n \R^n Rn中的点列极限

    { x k } ∈ R n , a ∈ R n \{\boldsymbol{x_k}\}\in\R^n,\boldsymbol{a}\in\R^n {xk}Rn,aRn,则点列 { x k } \{\boldsymbol{x_k}\} {xk}极限为 a \boldsymbol{a} a定义为

    lim ⁡ k → ∞ x k = a : ∀ ε > 0 , ∃ N ( ε ) ∈ N , s . t . ∀ k > N , ∣ ∣ x k − a ∣ ∣ < ε \lim_{k\to\infty}\boldsymbol{x_k}=\boldsymbol{a}:\forall\varepsilon>0,\exist N(\varepsilon)\in\N,s.t.\forall k>N,||\boldsymbol{x_k}-\boldsymbol{a}||<\varepsilon klimxk=a:ε>0,N(ε)N,s.t.∀k>N,∣∣xka∣∣<ε

    点列收敛于一点,等价于点列各分量收敛于该点各分量

    lim ⁡ k → ∞ x k = a ⇔ lim ⁡ k → ∞ x k ( i ) = a ( i ) , i = 1 , 2 , ⋯   , n \lim_{k\to\infty}\boldsymbol{x_k}=\boldsymbol{a}\Leftrightarrow\lim_{k\to\infty}\boldsymbol{x_k^{(i)}}=\boldsymbol{a^{(i)}},i=1,2,\cdots,n klimxk=aklimxk(i)=a(i),i=1,2,,n

  2. 多元函数的极限

    D ∈ R n , f : D → R D\in\R^n,f:D\to\R DRn,f:DR,则函数于点 x 0 \boldsymbol{x}_0 x0处收敛于 A A A定义为

    lim ⁡ x → x 0 f ( x ) = A : ∀ ε > 0 , ∃ δ > 0. s . t . ∀ x ∈ { x ∈ D ∣ 0 < ∣ ∣ x − x 0 ∣ ∣ < δ } , ∣ f ( x ) − A ∣ < ε \lim_{\boldsymbol{x}\to\boldsymbol{x_0}}f(\boldsymbol{x})=A:\forall\varepsilon>0,\exist\delta>0.s.t.\forall \boldsymbol{x}\in\{\boldsymbol{x}\in D|0<||\boldsymbol{x}-\boldsymbol{x_0}||<\delta\},|f(\boldsymbol{x})-A|<\varepsilon xx0limf(x)=A:ε>0,δ>0.s.t.∀x{xD∣0<∣∣xx0∣∣<δ},f(x)A<ε

  3. 多元函数的 H e i n e Heine Heine定理

    若 lim ⁡ k → ∞ x = x 0 , 则 lim ⁡ k → ∞ f ( x ) = lim ⁡ x → x o f ( x 0 ) = A 若\lim_{k\to\infty}\boldsymbol{x}=\boldsymbol{x_0},则\lim_{k\to\infty}f(\boldsymbol{x})=\lim_{\boldsymbol{x}\to\boldsymbol{x_o}}f(\boldsymbol{x_0})=A klimx=x0,klimf(x)=xxolimf(x0)=A

  4. 多元函数的 C a u c h y Cauchy Cauchy收敛准则

    极限 lim ⁡ k → ∞ f ( x ) 存在 , 当且仅当对 ∀ ε > 0 , ∃ δ > 0 , s . t . ∀ x ′ , x ′ ′ ∈ D , 满足 : 0 < ∣ ∣ x ′ − x 0 ∣ ∣ , ∣ ∣ x ′ ′ − x 0 ∣ ∣ < δ ⇒ ∣ f ( x ′ ) − f ( x ′ ′ ) ∣ < ε 极限\lim_{k\to\infty}f(\boldsymbol{x})存在,当且仅当对\forall\varepsilon>0,\exist\delta>0,s.t.\forall \boldsymbol{x'},\boldsymbol{x''}\in D,满足:\\ 0<||\boldsymbol{x'}-\boldsymbol{x_0}||,||\boldsymbol{x''}-\boldsymbol{x_0}||<\delta\Rightarrow|f(\boldsymbol{x'})-f(\boldsymbol{x''})|<\varepsilon 极限klimf(x)存在,当且仅当对ε>0,δ>0,s.t.∀x,x′′D,满足:0<∣∣xx0∣∣,∣∣x′′x0∣∣<δf(x)f(x′′)<ε

  5. 多元函数的连续性

    f ( x ) 在 x 0 处连续 ⇔ lim ⁡ x → x 0 f ( x ) = f ( x 0 ) f(\boldsymbol{x})在\boldsymbol{x_0}处连续\Leftrightarrow\lim_{\boldsymbol{x}\to\boldsymbol{x_0}}f(\boldsymbol{x})=f(\boldsymbol{x_0}) f(x)x0处连续xx0limf(x)=f(x0)

  6. 多元函数的最值定理

    在有界闭区域 D D D上的多元连续函数 f f f D D D上有界,且至少取得它的最大值和最小值各一次。

  7. 多元函数的介值定理

    在有界闭区域 D D D上的多元连续函数,如果在 D D D上取得两个不同的函数值,则它在 D D D上取得介于这两个函数值之间的任何值至少一次。

  8. 多元函数的偏导数

    若关于 x x x的一元函数 f ( x , y 0 ) f(x,y_0) f(x,y0) x 0 x_0 x0处可导,则 z = f ( x , y ) z=f(x,y) z=f(x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处对 x 0 x_0 x0的偏导数存在,即

    KaTeX parse error: Undefined control sequence: \part at position 7: \frac{\̲p̲a̲r̲t̲ ̲f(x_0,y_0)}{\pa…

  9. 多元函数的全微分

    若多元函数 z = f ( x , y ) z=f(x,y) z=f(x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某一邻域内有定义,且 f ( x , y ) f(x,y) f(x,y)在该点处的全增量可表示为

    Δ z = A Δ x + B Δ y + o ( ρ ) , ρ = ( Δ x ) 2 + ( Δ y ) 2 \Delta z=A\Delta x+B\Delta y+o(\rho),\rho=\sqrt{(\Delta x)^2+(\Delta y)^2} Δz=AΔx+BΔy+o(ρ),ρ=(Δx)2+(Δy)2

    则称 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微,并记 z z z在该点处的全微分为 d z = A Δ x + B Δ y dz=A\Delta x+B\Delta y dz=AΔx+BΔy

    函数可微的判断依据:函数 z = f ( x , y ) z=f(x,y) z=f(x,y) ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处可微,当且仅当

    lim ⁡ ρ → 0 + f ( x 0 + Δ x , y 0 + Δ y ) − f x ( x 0 , y 0 ) Δ x − f y ( x 0 , y 0 ) Δ y − f ( x 0 , y 0 ) ρ = 0 \lim_{\rho\to0^+}\frac{f(x_0+\Delta x,y_0+\Delta y)-f_x(x_0,y_0)\Delta x-f_y(x_0,y_0)\Delta y-f(x_0,y_0)}\rho=0 ρ0+limρf(x0+Δx,y0+Δy)fx(x0,y0)Δxfy(x0,y0)Δyf(x0,y0)=0

  10. 若函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的两个偏导数连续,则函数可微,且

    KaTeX parse error: Undefined control sequence: \part at position 10: dz=\frac{\̲p̲a̲r̲t̲ ̲z}{\part x}dx+\…

  11. 方向导数的定义

    函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在一点沿某一方向 l ⃗ \boldsymbol{\vec{l}} l 的变化率,称为方向导数,记为

    KaTeX parse error: Undefined control sequence: \part at position 7: \frac{\̲p̲a̲r̲t̲ ̲f}{\part\boldsy…

  12. 方向导数与梯度的关系

    若方向 l ⃗ \boldsymbol{\vec{l}} l 的单位向量为 ( cos ⁡ α , cos ⁡ β ) (\cos\alpha,\cos\beta) (cosα,cosβ),函数的梯度为KaTeX parse error: Undefined control sequence: \part at position 22: … f(x,y)=(\frac{\̲p̲a̲r̲t̲ ̲f}{\part x},\fr…,则

    KaTeX parse error: Undefined control sequence: \part at position 7: \frac{\̲p̲a̲r̲t̲ ̲f}{\part\boldsy…

  13. 复合函数求导的链式法则

    m m m元函数 f ( u 1 , u 2 , ⋯   , u m ) f(u_1,u_2,\cdots,u_m) f(u1,u2,,um) ( u 1 , u 2 , ⋯   , u m ) (u_1,u_2,\cdots,u_m) (u1,u2,,um)可微, u k ( x 1 , x 2 , ⋯   , x n ) , k = 1 , 2 , ⋯   , m u_k(x_1,x_2,\cdots,x_n),k=1,2,\cdots,m uk(x1,x2,,xn),k=1,2,,m均为 n n n元函数且在 ( x 1 , x 2 , ⋯   , x n ) (x_1,x_2,\cdots,x_n) (x1,x2,,xn)可微,则

    KaTeX parse error: Undefined control sequence: \part at position 7: \frac{\̲p̲a̲r̲t̲ ̲f}{\part x_i}=\…

  14. 高阶偏导数

    KaTeX parse error: Undefined control sequence: \part at position 7: \frac{\̲p̲a̲r̲t̲}{\part x}\frac…

  15. 多元微分中值定理

    D ⊂ R n D\sub\R^n DRn是凸区域, f : D → R f:D\to\R f:DR可微,则

    ∀ a , b ∈ D , ∃ ξ ∈ D , s . t . f ( b ) − f ( a ) = [ ∇ f ( ξ ) ] T ( b − a ) \forall \boldsymbol{a},\boldsymbol{b}\in D,\exist\boldsymbol{\xi}\in D,s.t.f(\boldsymbol{b})-f(\boldsymbol{a})=[\nabla f(\boldsymbol{\xi})]^T(\boldsymbol{b}-\boldsymbol{a}) a,bD,ξD,s.t.f(b)f(a)=[f(ξ)]T(ba)

  16. 二元函数的 T a y l o r Taylor Taylor公式

    KaTeX parse error: Undefined control sequence: \part at position 50: …t((x-x_0)\frac{\̲p̲a̲r̲t̲}{\part x}+(y-y…

    P e a n o Peano Peano余项形式为

    R k = o ( ∣ ∣ ( x − x 0 , y − y 0 ) ∣ ∣ k ) R_k=o(||(x-x_0,y-y_0)||^k) Rk=o(∣∣(xx0,yy0)k)

    L a g r a n g e Lagrange Lagrange余项形式为

    KaTeX parse error: Undefined control sequence: \part at position 39: …t((x-x_0)\frac{\̲p̲a̲r̲t̲}{\part x}+(y-y…

  17. 曲线的切线方程与法平面

    曲线的参数方程

    若曲线方程为 { x = x ( t ) y = y ( t ) z = z ( t ) , 则在曲线上 t = t 0 对应的点 ( x 0 , y 0 , z 0 ) 处有 : 切线 : x − x 0 x ′ ( t 0 ) = y − y 0 y ′ ( t 0 ) = z − z 0 z ′ ( t 0 ) 切向量 : T ⃗ = ( x ′ ( t 0 ) , y ′ ( t 0 ) , z ′ ( t 0 ) ) 法平面 : x ′ ( t 0 ) ( x − x 0 ) + y ′ ( t 0 ) ( y − y 0 ) + z ′ ( t 0 ) ( z − z 0 ) = 0 \begin{aligned} &若曲线方程为\begin{cases} x=x(t)\\y=y(t)\\z=z(t) \end{cases},则在曲线上t=t_0对应的点(x_0,y_0,z_0)处有:\\ &切线:\frac{x-x_0}{x'(t_0)}=\frac{y-y_0}{y'(t_0)}=\frac{z-z_0}{z'(t_0)}\\ &切向量:\boldsymbol{\vec{T}}=(x'(t_0),y'(t_0),z'(t_0))\\ &法平面:x'(t_0)(x-x_0)+y'(t_0)(y-y_0)+z'(t_0)(z-z_0)=0 \end{aligned} 若曲线方程为 x=x(t)y=y(t)z=z(t),则在曲线上t=t0对应的点(x0,y0,z0)处有:切线:x(t0)xx0=y(t0)yy0=z(t0)zz0切向量:T =(x(t0),y(t0),z(t0))法平面:x(t0)(xx0)+y(t0)(yy0)+z(t0)(zz0)=0

    曲线的一般方程

    若曲线方程为 { F ( x , y , z ) = 0 G ( x , y , z ) = 0 , 则在曲线上一点 ( x 0 , y 0 , z 0 ) 点处有 : { F x d x + F y d y + F z d z = 0 G x d x + G y d y + G z d z = 0 切线 : x − x 0 d x = y − y 0 d y = z − z 0 d z 切向量 : T ⃗ = ( d x , d y , d z ) 法平面 : ( x − x 0 ) d x + ( y − y 0 ) d y + ( z − z 0 ) d z = 0 其中 ( d x , d y , d z ) 需要根据 ∇ F ( x 0 , y 0 , z 0 ) , ∇ G ( x 0 , y 0 , z 0 ) 解出比例关系 \begin{aligned} &若曲线方程为\begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases},则在曲线上一点(x_0,y_0,z_0)点处有:\\ &\begin{cases}F_xdx+F_ydy+F_zdz=0\\G_xdx+G_ydy+G_zdz=0\end{cases}\\ &切线:\frac{x-x_0}{dx}=\frac{y-y_0}{dy}=\frac{z-z_0}{dz}\\ &切向量:\boldsymbol{\vec{T}}=(dx,dy,dz)\\ &法平面:(x-x_0)dx+(y-y_0)dy+(z-z_0)dz=0\\ &其中(dx,dy,dz)需要根据\nabla F(x_0,y_0,z_0),\nabla G(x_0,y_0,z_0)解出比例关系 \end{aligned} 若曲线方程为{F(x,y,z)=0G(x,y,z)=0,则在曲线上一点(x0,y0,z0)点处有:{Fxdx+Fydy+Fzdz=0Gxdx+Gydy+Gzdz=0切线:dxxx0=dyyy0=dzzz0切向量:T =(dx,dy,dz)法平面:(xx0)dx+(yy0)dy+(zz0)dz=0其中(dx,dy,dz)需要根据F(x0,y0,z0),G(x0,y0,z0)解出比例关系

  18. 曲面的切平面方程与法线方程

    若曲面方程为 F ( x , y , z ) = 0 , 则在曲面上一点 ( x 0 , y 0 , z 0 ) 处有 : 切平面 : F x ( x 0 , y 0 , z 0 ) ( x − x 0 ) + F y ( x 0 , y 0 , z 0 ) ( y − y 0 ) + F z ( x 0 , y 0 , z 0 ) ( z − z 0 ) = 0 法向量 : n ⃗ = ∇ F ( x 0 , y 0 , z 0 ) 法线 : x − x 0 F x ( x 0 , y 0 , z 0 ) = y − y 0 F y ( x 0 , y 0 , z 0 ) = z − z 0 F z ( x 0 , y 0 , z 0 ) \begin{aligned} &若曲面方程为F(x,y,z)=0,则在曲面上一点(x_0,y_0,z_0)处有:\\ &切平面:F_x(x_0,y_0,z_0)(x-x_0)+F_y(x_0,y_0,z_0)(y-y_0)+F_z(x_0,y_0,z_0)(z-z_0)=0\\ &法向量:\boldsymbol{\vec{n}}=\nabla F(x_0,y_0,z_0)\\ &法线:\frac{x-x_0}{F_x(x_0,y_0,z_0)}=\frac{y-y_0}{F_y(x_0,y_0,z_0)}=\frac{z-z_0}{F_z(x_0,y_0,z_0)} \end{aligned} 若曲面方程为F(x,y,z)=0,则在曲面上一点(x0,y0,z0)处有:切平面:Fx(x0,y0,z0)(xx0)+Fy(x0,y0,z0)(yy0)+Fz(x0,y0,z0)(zz0)=0法向量:n =F(x0,y0,z0)法线:Fx(x0,y0,z0)xx0=Fy(x0,y0,z0)yy0=Fz(x0,y0,z0)zz0

  19. 多元函数的极值

    极值必要条件

    若 a ⃗ 为 f 的极值点 , 则 a ⃗ 为 f 的驻点 , 即 ∇ f ( a ⃗ ) = 0 ⃗ 若\boldsymbol{\vec a}为f的极值点,则\boldsymbol{\vec a}为f的驻点,即\nabla f(\boldsymbol{\vec a})=\boldsymbol{\vec 0} a f的极值点,a f的驻点,f(a )=0

    极值充分条件

    设开集 D ⊂ R n , f : D → R 有二阶连续偏导数 , 且 a ⃗ 为 f 的驻点 , 则 : ( 1 ) 若 a ⃗ 处的 H e s s e n 矩阵 ∇ 2 f ( a ⃗ ) 正 ( 负 ) 定 , 则 a ⃗ 为 f 的严格极小 ( 大 ) 值点 ( 2 ) 若 a ⃗ 处的 H e s s e n 矩阵 ∇ 2 f ( a ⃗ ) 为不定方阵 , 则 a ⃗ 不是 f 的极值点 \begin{aligned} &设开集D\sub\R^n,f:D\to\R有二阶连续偏导数,且\boldsymbol{\vec a}为f的驻点,则:\\ &(1)若\boldsymbol{\vec a}处的Hessen矩阵\nabla^2f(\boldsymbol{\vec a})正(负)定,则\boldsymbol{\vec a}为f的严格极小(大)值点\\ &(2)若\boldsymbol{\vec a}处的Hessen矩阵\nabla^2f(\boldsymbol{\vec a})为不定方阵,则\boldsymbol{\vec a}不是f的极值点 \end{aligned} 设开集DRn,f:DR有二阶连续偏导数,a f的驻点,:(1)a 处的Hessen矩阵2f(a )(),a f的严格极小()值点(2)a 处的Hessen矩阵2f(a )为不定方阵,a 不是f的极值点

    二元函数的极值分析

    若二元函数 f ( x , y ) 有二阶连续偏导数 , 记 A = f x x , B = f x y , C = f y y , 则 : ( 1 ) 若 A C − B 2 > 0 , 则 f 在 A > 0 时有极小值 , A < 0 时有极大值 ( 2 ) 若 A C − B 2 < 0 , 则 f 没有极值 ( 3 ) 若 A C − B 2 = 0 , 则 f 的极值情况不确定 \begin{aligned} &若二元函数f(x,y)有二阶连续偏导数,记A=f_{xx},B=f_{xy},C=f_{yy},则:\\ &(1)若AC-B^2>0,则f在A>0时有极小值,A<0时有极大值\\ &(2)若AC-B^2<0,则f没有极值\\ &(3)若AC-B^2=0,则f的极值情况不确定 \end{aligned} 若二元函数f(x,y)有二阶连续偏导数,A=fxx,B=fxy,C=fyy,:(1)ACB2>0,fA>0时有极小值,A<0时有极大值(2)ACB2<0,f没有极值(3)ACB2=0,f的极值情况不确定

  20. L a g r a n g e Lagrange Lagrange乘子法

    若 x ∈ R n , 则目标函数 f ( x ) 和 m 个约束条件 h i ( x ) = 0 ( i = 1 , ⋯   , m ) 可以构成 L a g r a n g e 函数 L ( x , λ ) = f ( x ) + ∑ i = 1 m λ i h i ( x ) , 其中 λ = ( λ 1 , ⋯   , λ m ) ∈ R m { ∇ L x ( x , λ ) = 0 ∇ L λ ( x , λ ) = 0 的解中的 x 部分即为可能的极值点 \begin{aligned} &若\boldsymbol{x}\in\R^n,则目标函数f(\boldsymbol{x})和m个约束条件h_i(\boldsymbol{x})=0(i=1,\cdots,m)可以构成Lagrange函数\\ &L(\boldsymbol{x},\boldsymbol{\lambda})=f(\boldsymbol{x})+\sum_{i=1}^m\lambda_ih_i(\boldsymbol{x}),其中\boldsymbol{\lambda}=(\lambda_1,\cdots,\lambda_m)\in\R^m\\ &\begin{cases}\nabla L_{\boldsymbol{x}}(\boldsymbol{x},\boldsymbol{\lambda})=0\\\nabla L_{\boldsymbol{\lambda}}(\boldsymbol{x},\boldsymbol{\lambda})=0\end{cases}的解中的\boldsymbol{x}部分即为可能的极值点 \end{aligned} xRn,则目标函数f(x)m个约束条件hi(x)=0(i=1,,m)可以构成Lagrange函数L(x,λ)=f(x)+i=1mλihi(x),其中λ=(λ1,,λm)Rm{Lx(x,λ)=0Lλ(x,λ)=0的解中的x部分即为可能的极值点

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值