【考研数学一·高数(6)】多元函数微分学

1.概念

1.1极限

设函数 f ( x , y ) f(x,y) f(x,y)在区域 D D D上有定义, P 0 ( x 0 , y 0 ) ∈ D P_0(x_0,y_0)\in D P0(x0,y0)D或为 D D D边界上的一点.如果对于任意给定的 ϵ > 0 \epsilon>0 ϵ>0,总存在 δ > 0 \delta>0 δ>0,当点 P ( x , y ) ∈ D P(x,y)\in D P(x,y)D,且满足 0 < ∣ P P 0 ∣ = ( x − x 0 ) 2 + ( y − y 0 ) 2 < δ 0<|PP_0|=\sqrt{(x-x_0)^2+(y-y_0)^2}<\delta 0<PP0=(xx0)2+(yy0)2 <δ时,恒有 ∣ f ( x , y ) − A ∣ < ϵ |f(x,y)-A|<\epsilon f(x,y)A<ϵ,则称常数 A A A ( x , y ) → ( x 0 , y 0 ) (x,y)\to(x_0,y_0) (x,y)(x0,y0) f ( x , y ) f(x,y) f(x,y)的极限,记作 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = A \lim\limits_{(x,y)\to(x_0,y_0)}f(x,y)=A (x,y)(x0,y0)limf(x,y)=A lim ⁡ x → x 0 y → y 0 f ( x , y ) = A \lim\limits_{\begin{matrix}x\to x_0\\y\to y_0\end{matrix}}f(x,y)=A xx0yy0limf(x,y)=A lim ⁡ P → P 0 f ( P ) = A \lim\limits_{P\to P_0}f(P)=A PP0limf(P)=A.

1.2.连续

如果 lim ⁡ ( x , y ) → ( x 0 , y 0 ) f ( x , y ) = f ( x 0 , y 0 ) \lim\limits_{(x,y)\to(x_0,y_0)}f(x,y)=f(x_0,y_0) (x,y)(x0,y0)limf(x,y)=f(x0,y0),则称 f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处连续.

1.3.偏导数

  1. 定义

    • ∂ f ∂ x ∣ x = x 0 y = y 0 = f x ′ ( x 0 , y 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x \frac{\partial f}{\partial x}|_{\begin{matrix}x=x_0\\y=y_0\end{matrix}}=f'_x(x_0,y_0)=\lim\limits_{\Delta x\to0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x} xfx=x0y=y0=fx(x0,y0)=Δx0limΔxf(x0+Δx,y0)f(x0,y0)
    • ∂ f ∂ y ∣ x = x 0 y = y 0 = f y ′ ( x 0 , y 0 ) = lim ⁡ Δ y → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y \frac{\partial f}{\partial y}|_{\begin{matrix}x=x_0\\y=y_0\end{matrix}}=f'_y(x_0,y_0)=\lim\limits_{\Delta y\to0}\frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y} yfx=x0y=y0=fy(x0,y0)=Δy0limΔyf(x0,y0+Δy)f(x0,y0)
  2. 几何意义

    设有二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y),且 z 0 = f ( x 0 , y 0 ) z_0=f(x_0,y_0) z0=f(x0,y0)

    • f x ′ ( x 0 , y 0 ) f'_x(x_0,y_0) fx(x0,y0)在几何上表示曲线 { z = f ( x , y ) y = y 0 \begin{cases}z=f(x,y)\\y=y_0\end{cases} {z=f(x,y)y=y0在点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)处的切线对 x x x轴的斜率
    • f y ′ ( x 0 , y 0 ) f'_y(x_0,y_0) fy(x0,y0)在几何上表示曲线 { z = f ( x , y ) x = x 0 \begin{cases}z=f(x,y)\\x=x_0\end{cases} {z=f(x,y)x=x0在点 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) (x0,y0,z0)处的切线对 y y y轴的斜率
  3. 如果函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的两个二阶混合偏导数 ∂ 2 z ∂ x ∂ y \frac{\partial^2z}{\partial x\partial y} xy2z ∂ 2 z ∂ y ∂ x \frac{\partial^2z}{\partial y\partial x} yx2z都在区域 D D D内连续,则在区域 D D D ∂ 2 z ∂ x ∂ y = ∂ 2 z ∂ y ∂ x \frac{\partial^2z}{\partial x\partial y}=\frac{\partial^2z}{\partial y\partial x} xy2z=yx2z

1.4.全微分

  1. 定义
    • 设二元函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)的某邻域内有定义,若 z = f ( x , y ) z=f(x,y) z=f(x,y)的全增量 Δ z = f ( x + Δ x , y + Δ y ) − f ( x , y ) \Delta z=f(x+\Delta x,y+\Delta y)-f(x,y) Δz=f(x+Δx,y+Δy)f(x,y)可以表示为 Δ z = A Δ x + B Δ y + o ( ρ ) \Delta z=A\Delta x+B\Delta y+o(\rho) Δz=AΔx+BΔy+o(ρ),其中 A , B A,B A,B不依赖于 Δ x , Δ y \Delta x,\Delta y Δx,Δy,而仅与 x , y x,y x,y有关, ρ = ( Δ x ) 2 + ( Δ y 2 ) \rho=\sqrt{(\Delta x)^2+(\Delta y^2)} ρ=(Δx)2+(Δy2) ,则称函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)处可微.
    • A Δ x + B Δ y A\Delta x+B\Delta y AΔx+BΔy称为函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)处的全微分,记作 d z \mathrm{d}z dz
  2. 若函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)处可微 ⇒ z = f ( x , y ) \Rightarrow z=f(x,y) z=f(x,y) ( x , y ) (x,y) (x,y)处连续
  3. 可微的必要条件
    • z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x , y ) (x,y) (x,y)处可微 ⇒ \Rightarrow 偏导数存在,且 A = ∂ z ∂ x , B = ∂ z ∂ y A=\frac{\partial z}{\partial x},B=\frac{\partial z}{\partial y} A=xz,B=yz
  4. 可微的充分条件
    • 函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的偏导数 ∂ z ∂ x , ∂ z ∂ y \frac{\partial z}{\partial x},\frac{\partial z}{\partial y} xz,yz在点 ( x , y ) (x,y) (x,y)处连续 ⇒ \Rightarrow 函数在该点可微
  5. 全微分的形式不变性
    • z = f ( u , v ) , u = u ( x , y ) , v = v ( x , y ) z=f(u,v),u=u(x,y),v=v(x,y) z=f(u,v),u=u(x,y),v=v(x,y),如果 f ( u , v ) , u ( x , y ) , v ( x , y ) f(u,v),u(x,y),v(x,y) f(u,v),u(x,y),v(x,y)分别有连续偏导数,则复合函数 z = f ( u , v ) z=f(u,v) z=f(u,v) ( x , y ) (x,y) (x,y)处的全微分仍可表示为 d z = ∂ z ∂ u d u + ∂ z ∂ v d v \mathrm{d}z=\frac{\partial z}{\partial u}\mathrm{d}u+\frac{\partial z}{\partial v}\mathrm{d}v dz=uzdu+vzdv.
  6. 可微的判别
    • 写出全增量 Δ z = f ( x 0 + Δ x , y 0 + Δ y ) − f ( x 0 , y 0 ) \Delta z=f(x_0+\Delta x,y_0+\Delta y)-f(x_0,y_0) Δz=f(x0+Δx,y0+Δy)f(x0,y0)
    • 写出线性增量 A Δ x + B Δ y A\Delta x+B\Delta y AΔx+BΔy,其中 A = f x ′ ( x 0 , y 0 ) , B = f y ′ ( x 0 , y 0 ) A=f'_x(x_0,y_0),B=f'_y(x_0,y_0) A=fx(x0,y0),B=fy(x0,y0)
    • 作极限 lim ⁡ Δ x → 0 Δ y → 0 Δ z − ( A Δ x + B Δ y ) ( Δ x ) 2 + ( Δ y ) 2 \lim\limits_{\begin{matrix}\Delta x\to0\\\Delta y\to0\end{matrix}}\frac{\Delta z-(A\Delta x+B\Delta y)}{\sqrt{(\Delta x)^2+(\Delta y)^2}} Δx0Δy0lim(Δx)2+(Δy)2 Δz(AΔx+BΔy)
    • 若极限等于0,则可微,否则不可微

在这里插入图片描述

2.复合函数求导法(链式求导规则)

z = z ( u , v ) , u = u ( x , y ) , v = v ( x , y ) z=z(u,v),u=u(x,y),v=v(x,y) z=z(u,v),u=u(x,y),v=v(x,y),复合结构图为在这里插入图片描述

  • ∂ z ∂ x = ∂ z ∂ u ⋅ ∂ u ∂ x + ∂ z ∂ v ⋅ ∂ v ∂ x \frac{\partial z}{\partial x}=\frac{\partial z}{\partial u}\cdot\frac{\partial u}{\partial x}+\frac{\partial z}{\partial v}\cdot\frac{\partial v}{\partial x} xz=uzxu+vzxv
  • ∂ z ∂ y = ∂ z ∂ u ⋅ ∂ u ∂ y + ∂ z ∂ v ⋅ ∂ v ∂ y \frac{\partial z}{\partial y}=\frac{\partial z}{\partial u}\cdot\frac{\partial u}{\partial y}+\frac{\partial z}{\partial v}\cdot\frac{\partial v}{\partial y} yz=uzyu+vzyv
  • 全导数: z = ( u , v ) , u = u ( x ) , v = v ( x ) z=(u,v),u=u(x),v=v(x) z=(u,v),u=u(x),v=v(x) d z d x \frac{\mathrm{d}z}{\mathrm{d}x} dxdz叫全导数

3.隐函数求导法

3.1.一个方程的情形

F ( x , y , z ) = 0 , P 0 ( x 0 , y 0 , z 0 ) F(x,y,z)=0,P_0(x_0,y_0,z_0) F(x,y,z)=0,P0(x0,y0,z0),若满足 { F ( P 0 ) = 0 F z ′ ( P 0 ) ≠ 0 \begin{cases}F(P_0)=0\\F'_z(P_0)\ne0\end{cases} {F(P0)=0Fz(P0)=0,则在点 P 0 P_0 P0的某邻域内可确定 z = z ( x , y ) z=z(x,y) z=z(x,y),且有 { ∂ z ∂ x = − F x ′ F z ′ ∂ z ∂ y = − F y ′ F z ′ \begin{cases}\frac{\partial z}{\partial x}=-\frac{F_x'}{F_z'}\\\frac{\partial z}{\partial y}=-\frac{F_y'}{F_z'}\end{cases} xz=FzFxyz=FzFy

3.2.方程组的情形

{ F ( x , y , z ) = 0 G ( x , y , z ) = 0 \begin{cases}F(x,y,z)=0\\G(x,y,z)=0\end{cases} {F(x,y,z)=0G(x,y,z)=0,当满足 ∂ ( F , G ) ∂ ( y , z ) = ∣ ∂ F ∂ y ∂ F ∂ z ∂ G ∂ y ∂ G ∂ z ∣ ≠ 0 \frac{\partial(F,G)}{\partial(y,z)}=\begin{vmatrix}\frac{\partial F}{\partial y}&\frac{\partial F}{\partial z}\\\frac{\partial G}{\partial y}&\frac{\partial G}{\partial z}\end{vmatrix}\ne0 (y,z)(F,G)= yFyGzFzG =0时,可确定 { y = y ( x ) z = z ( x ) \begin{cases}y=y(x)\\z=z(x)\end{cases} {y=y(x)z=z(x)

  • d y d x = − ∂ ( F , G ) ∂ ( x , z ) ∂ ( F , G ) ∂ ( y , z ) = − ∣ ∂ F ∂ x ∂ F ∂ z ∂ G ∂ x ∂ G ∂ z ∣ ∣ ∂ F ∂ y ∂ F ∂ z ∂ G ∂ y ∂ G ∂ z ∣ \frac{\mathrm{d}y}{\mathrm{d}x}=-\frac{\frac{\partial(F,G)}{\partial(x,z)}}{\frac{\partial(F,G)}{\partial(y,z)}}=-\frac{\begin{vmatrix}\frac{\partial F}{\partial x}&\frac{\partial F}{\partial z}\\\frac{\partial G}{\partial x}&\frac{\partial G}{\partial z}\end{vmatrix}}{\begin{vmatrix}\frac{\partial F}{\partial y}&\frac{\partial F}{\partial z}\\\frac{\partial G}{\partial y}&\frac{\partial G}{\partial z}\end{vmatrix}} dxdy=(y,z)(F,G)(x,z)(F,G)= yFyGzFzG xFxGzFzG
  • d z d x = − ∂ ( F , G ) ∂ ( y , x ) ∂ ( F , G ) ∂ ( y , z ) = − ∣ ∂ F ∂ y ∂ F ∂ x ∂ G ∂ y ∂ G ∂ x ∣ ∣ ∂ F ∂ y ∂ F ∂ z ∂ G ∂ y ∂ G ∂ z ∣ \frac{\mathrm{d}z}{\mathrm{d}x}=-\frac{\frac{\partial(F,G)}{\partial(y,x)}}{\frac{\partial(F,G)}{\partial(y,z)}}=-\frac{\begin{vmatrix}\frac{\partial F}{\partial y}&\frac{\partial F}{\partial x}\\\frac{\partial G}{\partial y}&\frac{\partial G}{\partial x}\end{vmatrix}}{\begin{vmatrix}\frac{\partial F}{\partial y}&\frac{\partial F}{\partial z}\\\frac{\partial G}{\partial y}&\frac{\partial G}{\partial z}\end{vmatrix}} dxdz=(y,z)(F,G)(y,x)(F,G)= yFyGzFzG yFyGxFxG

4.多元函数的极值和最值

4.1.定义

设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某邻域内有定义

  • 如果在此邻域内都有 f ( x , y ) ⩽ f ( x 0 , y 0 ) f(x,y)\leqslant f(x_0,y_0) f(x,y)f(x0,y0),则称函数 f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处取得极大值
  • 如果在此邻域内都有 f ( x , y ) ⩾ f ( x 0 , y 0 ) f(x,y)\geqslant f(x_0,y_0) f(x,y)f(x0,y0),则称函数 f ( x , y ) f(x,y) f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处取得极小值

4.2.极值存在的必要条件

  • 设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处具有偏导数,且在 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)处取得极值 ⇒ f x ′ ( x 0 , y 0 ) = 0 , f y ′ ( x 0 , y 0 ) = 0 \Rightarrow f'_x(x_0,y_0)=0,f'_y(x_0,y_0)=0 fx(x0,y0)=0,fy(x0,y0)=0
  • 偏导数不存在的点也可能是极值点

4.3.极值存在的充分条件

设函数 z = f ( x , y ) z=f(x,y) z=f(x,y)在点 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)的某邻域内连续,且具有一阶及二阶连续偏导数,又 f x ′ ( x 0 , y 0 ) = 0 , f y ′ ( x 0 , y 0 ) = 0 f'_x(x_0,y_0)=0,f'_y(x_0,y_0)=0 fx(x0,y0)=0,fy(x0,y0)=0.

f x x ′ ′ ( x 0 , y 0 ) = A , f x y ′ ′ ( x 0 , y 0 ) = B , f y y ′ ′ ( x 0 , y 0 ) = C f''_{xx}(x_0,y_0)=A,f''_{xy}(x_0,y_0)=B,f''_{yy}(x_0,y_0)=C fxx′′(x0,y0)=A,fxy′′(x0,y0)=B,fyy′′(x0,y0)=C

  1. A C − B 2 > 0 AC-B^2>0 ACB2>0时, { A > 0 ⇒ 极小值 A < 0 ⇒ 极大值 \begin{cases}A>0\Rightarrow极小值\\A<0\Rightarrow极大值\end{cases} {A>0极小值A<0极大值
  2. A C − B 2 < 0 AC-B^2<0 ACB2<0时,不是极值
  3. A C − B 2 = 0 AC-B^2=0 ACB2=0时,不能确定,另作讨论(一般用定义法)

4.4.条件最值与拉格朗日乘数法

求目标函数 u = f ( x , y , z ) u=f(x,y,z) u=f(x,y,z)在条件 { ϕ ( x , y , z ) = 0 ψ ( x , y , z ) = 0 \begin{cases}\phi(x,y,z)=0\\\psi(x,y,z)=0\end{cases} {ϕ(x,y,z)=0ψ(x,y,z)=0下的最值

  1. 构造辅助函数 F ( x , y , z , λ , μ ) = f ( x , y , z ) + λ ϕ ( x , y , z ) + μ ψ ( x , y , z ) F(x,y,z,\lambda,\mu)=f(x,y,z)+\lambda\phi(x,y,z)+\mu\psi(x,y,z) F(x,y,z,λ,μ)=f(x,y,z)+λϕ(x,y,z)+μψ(x,y,z)
  2. { F x ′ = f x ′ + λ ϕ x ′ + μ ψ x ′ = 0 F y ′ = f y ′ + λ ϕ y ′ + μ ψ y ′ = 0 F z ′ = f z ′ + λ ϕ z ′ + μ ψ z ′ = 0 F λ ′ = ϕ ( x , y , z ) = 0 F μ ′ = ψ ( x , y , z ) = 0 \begin{cases}F'_x=f'_x+\lambda\phi'_x+\mu\psi'_x=0\\F'_y=f'_y+\lambda\phi'_y+\mu\psi'_y=0\\F'_z=f'_z+\lambda\phi'_z+\mu\psi'_z=0\\F'_\lambda=\phi(x,y,z)=0\\F'_\mu=\psi(x,y,z)=0\end{cases} Fx=fx+λϕx+μψx=0Fy=fy+λϕy+μψy=0Fz=fz+λϕz+μψz=0Fλ=ϕ(x,y,z)=0Fμ=ψ(x,y,z)=0
  3. 解上述方程组得备选点 P i , i = 1 , 2 , 3 , ⋯   , n P_i,i=1,2,3,\cdots,n Pi,i=1,2,3,,n,并求 f ( P i ) f(P_i) f(Pi),取其最大值为 u max ⁡ u_{\max} umax,最小值为 u min ⁡ u_{\min} umin
  4. 根据实际问题,必存在最值,所得即为所求

4.5.有界闭区域上连续函数的最值

  • 理论依据——最大值与最小值定理:在有界闭区域 D D D上的多元连续函数,在 D D D上一定有最大值和最小值.
  • 求法
    1. 根据 f x ′ ( x , y ) , f y ′ ( x , y ) f'_x(x,y),f'_y(x,y) fx(x,y),fy(x,y)为0或不存在,求出 D D D内部的所有可疑点
    2. 用拉格朗日乘数法或代入法求出 D D D边界上的所有可疑点
      数,在 D D D上一定有最大值和最小值.
  • 求法
    1. 根据 f x ′ ( x , y ) , f y ′ ( x , y ) f'_x(x,y),f'_y(x,y) fx(x,y),fy(x,y)为0或不存在,求出 D D D内部的所有可疑点
    2. 用拉格朗日乘数法或代入法求出 D D D边界上的所有可疑点
    3. 比较以上所有可疑点的函数值大小,最大为最大值,最小为最小值
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值