💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
【多变量输入超前多步预测】基于CNN-BiGRU-Attention的光伏功率预测研究是一个结合了卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(Attention)优势的领域,旨在提高光伏功率预测的准确性和稳定性。以下是对该研究领域的详细分析:
一、模型概述
卷积神经网络(CNN):
- 优势:CNN擅长提取输入数据中的局部特征,通过卷积层和池化层的组合,可以有效地捕捉到数据中的关键信息。
- 作用:在光伏功率预测中,CNN被用于提取输入数据(如光照强度、温度、风速等多变量)中的空间或时间局部特征,为后续处理提供基础。
双向门控循环单元(BiGRU):
- 优势:BiGRU结合了前向GRU和后向GRU,能够同时考虑时间序列数据的前后文信息,从而捕捉到序列中的双向依赖关系。
- 作用:在光伏功率预测中,BiGRU利用CNN提取的特征信息,进一步学习这些特征之间的时序依赖关系,实现对光伏功率输出的长期预测。
注意力机制(Attention):
- 作用:注意力机制通过赋予不同时间步长或特征不同的权重,使模型能够更加关注对预测结果影响较大的部分。在光伏功率预测中,这有助于提升模型对关键时间点的敏感度,从而提高预测的精度。
二、多变量输入与超前多步预测
多变量输入:
- 光伏功率输出受到多种因素的影响,包括光照强度、温度、风速、风向、湿度、大气压等气象因素以及历史功率数据等。这些因素作为多变量输入,能够更全面地反映光伏系统的实际运行情况。
- 通过引入多变量输入,CNN-BiGRU-Attention模型能够捕捉更多的影响因素,从而提高预测的准确性和鲁棒性。
超前多步预测:
- 超前多步预测是指在当前时间点预测未来多个时间点的光伏功率输出。这对于电力系统的调度和运行至关重要。
- CNN-BiGRU-Attention模型通过结合CNN的局部特征提取能力、BiGRU的时序依赖学习能力以及Attention机制的权重分配能力,能够实现对未来多个时间点的光伏功率输出进行准确预测。
三、模型构建与训练
数据预处理:
- 对收集到的多变量输入数据进行清洗、归一化等预处理操作,以提高数据质量和模型的训练效率。
模型构建:
- 输入层:接收预处理后的多变量输入数据。
- CNN层:利用卷积层和池化层提取输入数据中的局部特征。
- BiGRU层:利用双向GRU学习特征之间的时序依赖关系。
- Attention层:通过注意力机制对BiGRU的输出进行加权处理,突出关键信息。
- 输出层:输出预测的光伏功率值。
模型训练:
- 使用历史数据对CNN-BiGRU-Attention模型进行训练,通过反向传播算法优化模型参数。
- 在训练过程中,可以采用交叉验证等方法来评估模型的泛化能力,防止过拟合或欠拟合现象的发生。
四、评估指标与应用前景
评估指标:
- 通常采用均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)等指标来评估模型的预测性能。这些指标能够量化模型的预测精度和稳定性。
应用前景:
- 随着光伏市场的不断扩大和智能电网建设的深入推进,基于CNN-BiGRU-Attention的光伏功率预测研究具有重要的应用前景。
- 该研究有助于提高光伏功率预测的准确性和稳定性,为电力系统的调度和运行提供有力支持。同时,也有助于光伏电站的投资决策、避免过载运行以及参与电力市场交易等提供重要参考。
总之,【多变量输入超前多步预测】基于CNN-BiGRU-Attention的光伏功率预测研究是一个具有挑战性和应用前景的领域,值得进一步深入研究和探索。
📚2 运行结果
部分代码:
function [mae,rmse,mape,error]=calc_error(x1,x2)
error=x2-x1; %计算误差
rmse=sqrt(mean(error.^2));
disp(['1.均方差(MSE):',num2str(mse(x1-x2))])
disp(['2.根均方差(RMSE):',num2str(rmse)])
mae=mean(abs(error));
disp(['3.平均绝对误差(MAE):',num2str(mae)])
mape=mean(abs(error)/x1);
disp(['4.平均相对百分误差(MAPE):',num2str(mape*100),'%'])
Rsq1 = 1 - sum((x1 - x2).^2)/sum((x1 - mean(x2)).^2);
disp(['5.R2:',num2str(Rsq1*100),'%'])
end
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]史凯钰,张东霞,韩肖清,等.基于LSTM与迁移学习的光伏发电功率预测数字孪生模型[J].电网技术, 2022(004):046.DOI:10.13335/j.1000-3673.pst.2021.0738.
[2]吉锌格,李慧,刘思嘉,等.基于MIE-LSTM的短期光伏功率预测[J].电力系统保护与控制, 2020, 48(7):8.DOI:CNKI:SUN:JDQW.0.2020-07-006.
[3]刘兴霖,黄超,王龙,等.基于聚类和LSTM的光伏功率日前逐时鲁棒预测[J].计算机技术与发展, 2023, 33(3):120-126.DOI:10.3969/j.issn.1673-629X.2023.03.018.
[4]王东风,刘婧,黄宇,等.结合太阳辐射量计算与CNN-LSTM组合的光伏功率预测方法研究[J].太阳能学报, 2024, 45(2):443-450.DOI:10.19912/j.0254-0096.tynxb.2022-1542.
🌈4 Matlab代码、数据
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取