一、安装深度学习环境(PyTorch)
二、GitHub下载官方YOLOv11代码
(1) 打开GitHub官网,搜索Ultralytics
(2)下载Ultralytics公开的YOLOv11代码
(3)将代码下载到本地之后解压缩到本地
三、准备数据集(训练集,验证集和测试集)以及配置.yaml文件。
(1)准备数据集(确保数据集格式)
我使用的数据集格式为:
(2)配置数据集对应的.yaml文件
为什么要配置.yaml文件?是因为在训练时,会根据.yaml文件内提供的数据集地址去找到相对应的数据集,所以在.yaml文件内要写训练集、验证集及测试集的地址。
四、写训练脚本(即train.py)
加载YOLOv11模型,默认加载的是YOLOv11n模型,如需加载其余模型,则将其余模型注释掉就可以了(如下图)。
本部分只展示部分参数的设置,默认参数值在在本地代码ultralytics\cfg\default.yaml文件中,可根据需要进行相关配置。
五、安装YOLO环境
在第一步安装的深度学习环境之下,输入pip install ultralytics安装YOLO运行环境。
pip install ultralytics
说明:若没有配置国内镜像源(加速下载),可以使用如下语句在清华源镜像下安装YOLO运行环境。
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple
六、运行YOLO目标检测代码(先看说明)
说明:在第一次运行YOLO目标检测代码时,代码会自动下载Arial.ttf字体以及YOLOv11n.pt权重文件,由于从国外下载会耗费太长时间,为了避免等待过长时间,我们在Github预先下载这两个文件,并放置在ultralytics文件夹下就好啦。(这样可节省初次运行代码下载这两个相关文件的等待时间)。