yolov11 epoch100轮 训练笔记5 kaggle comet

Football Players Detection using YOLOV11 | Kaggle

!pip install comet_ml

import comet_ml

comet_ml.login(project_name="c")

 Comet - Build Better Models Faster

 yolov11训练

100轮一眨眼训练完了

然而comet接不到yolo的sdk

优秀

 训练17轮map就0.99了

 

v5训练100轮才0.6

有了,就是训练轮次不够

效果和11比差远了

 map在50轮后才稳定上升

有边框信息了

本地detect读取边界框信息

w torch==2.5.1 torchvision --index-url https://download.pytorch.org/whl/cu124
w ultralytics

windows下torch能要我命 睡个午觉先

from ultralytics import YOLO
import numpy as np
# 加载模型
model = YOLO('./best.pt')

# 执行预测并获取结果
results = model.predict(source='./valid/images/screenshot-20250504103355_png.rf.71febf531b60b1e416aece6136e28388.jpg')

# 遍历结果
for result in results:
    boxes = result.boxes  # 获取所有检测到的边框
    for box in boxes:
        print("BoundingBox: ", box.xyxy)  # 输出边框坐标(x1, y1, x2, y2)
      
        print("Confidence: ", box.conf)   # 置信度分数
        print("Class: ", box.cls)         # 类别ID
        print("物体是: ",model.names[int(box.cls.item()) ],"范围为: ",box.xyxy.cpu().numpy()) 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值