Huggingface下载带权限的私人数据集(解决huggingface-cli login失败)包会~

背景:在Huggingface下载带有权限的私人数据集。作者已经给了我访问数据集的权限,没有权限的话可能需要发邮件向作者申请访问仓库的权限。得到访问权限后该如何进行下载呢?其他的git,网页下载等方法不介绍了,本文在Anaconda Prompt用命令行下载方法的介绍。

解决了:huggingface-cli login遇到的ValueError: Invalid token passed!问题

步骤一:

打开Hugging Face – The AI community building the future.申请访问Tokens

Create new token ---> Read ---> 随便起个名字 ---> 复制  ---> 找个地方粘贴放好
(如果后面弄丢了就刷新token就好了)

如果忘记了Token,可以在这里刷新Token再复制

步骤二:

打开电脑的Anaconda Prompt,创建一个虚拟环境,激活虚拟环境,cd到你需要下载到的文件夹路径,并在虚拟环境下安装huggingface_hub

conda create -n R2Gen
conda activate R2Gen
pip install huggingface_hub[hf_transfer]==0.24.0
步骤三:

HF_HUB_ENABLE_HF_TRANSFER=1 是一个环境变量设置,用于启用 Hugging Face Hub 的 hf_transfer 功能。这个功能可以加速文件传输,特别是在下载大型模型或数据集时。

windows系统用set,Linux 和 macOS 系统用export

set HF_HUB_ENABLE_HF_TRANSFER=1

测试一下有没有正常配置临时环境,输入以下命令,返回1就说明设置成功了

echo %HF_HUB_ENABLE_HF_TRANSFER%
步骤四:

检查能否正常联网,在Anaconda Prompt中输入以下命令行

返回200则说明能正常访问Huggingface

python -c "import requests; print(requests.get('https://huggingface.co').status_code)"

步骤五:

因为是带权限的数据,一般需要登录huggingface-cli login,但是这里一直在出错,所以我们直接不用这个方法。我们通过设置环境变量登录,直接在 Anaconda Prompt 中设置 Token

set HUGGING_FACE_HUB_TOKEN=你的Token

设置完Token后,检查一下有没有正确设置,输入下面其中一句命令行,返回你注册的用户名以及该数据集所属的组织名称就说明正确设置并且你可以访问这个数据集了。

huggingface-cli whoami
python -c "from huggingface_hub import whoami; print(whoami())"

步骤六:

下载数据集,输入以下命令行,即可开始下载

--local-dir的 ' . '是代表下载到当前文件夹路径下

huggingface-cli download 你的数据集 --repo-type dataset --local-dir .

踩雷点:

1. 一直在尝试huggingface-cli login,但是一直出错,说登录无效。解决方法是绕过CLI去登录,即设置环境变量去登录,返回你的用户名,说明登录成功

2. 登陆不了以为是网络的问题,在终端使用ping huggingface.co,一直请求超时,后面知道Hugging Face 服务器通常禁用了 ICMP (ping) 请求,所以 ping 不通不代表网络有问题。curl -I https://huggingface.co 失败,这可能是环境没有安装curl命令。Python 请求返回 200那就说明 Python 环境能正常访问 Hugging Face

<think>好的,我现在需要回答用户关于如何使用huggingface-cli命令下载数据集的问题。首先,我得确保自己对这个命令的使用方法有正确的理解。 记得Hugging Face提供了多种方式来访问数据集,比如通过Python库中的load_dataset函数。但用户特别问到的是使用huggingface-cli命令行工具,所以我需要确认这个工具是否支持直接下载数据集。可能需要查阅官方文档或者帮助信息。 先回忆一下huggingface-cli的常用命令。通常,这个工具主要用于登录、管理模型和数据集,但下载数据集的主要方法可能还是通过Python库。不过,用户可能希望不写代码,直接用命令行完成下载。这时候可能需要用到huggingface-cli的某个子命令,比如huggingface-cli download,或者是否有其他参数。 查阅相关资料,发现huggingface-cli的download命令可以用于下载文件,比如模型或数据集中的特定文件。例如,huggingface-cli download dataset_name path/to/file.csv --repo-type dataset。但如果是下载整个数据集,可能需要指定--repo-type dataset参数,并给出数据集名称。 另外,用户可能也需要知道如何查找可用的数据集名称,比如在Hugging Face Hub上搜索,或者在命令行中使用搜索功能。但huggingface-cli是否有搜索命令呢?可能没有,所以需要引导用户去网站查找。 还需要注意权限问题,如果是私有数据集,可能需要先登录,使用huggingface-cli login命令输入token。 总结步骤应该是:1. 安装huggingface_hub库;2. 使用huggingface-cli download命令指定数据集名称和文件路径;3. 可能需要指定版本、缓存目录等参数。同时,提醒用户如果下载整个数据集可能需要遍历所有文件,或者推荐使用Python的load_dataset方法更方便。 此外,参考用户提供的引用内容,但看起来引用中的内容是关于Docker、预测脚本、Git克隆和OpenAI CLI的,可能与当前问题无关,所以可能不需要引用这些内容。不过需要检查是否有相关引用被遗漏,但根据问题,用户可能没有提供关于huggingface-cli的直接引用,所以回答时不涉及引用标识。 最后,确保回答结构清晰,分步骤说明,并提供示例命令,同时对比Python方法,指出各自的适用场景。还要生成相关问题,帮助用户进一步探索。</think>### 使用huggingface-cli下载数据集的步骤 Hugging Face提供了`huggingface-cli`命令行工具用于与模型和数据集仓库交互。以下是具体操作步骤: 1. **安装依赖** 确保已安装`huggingface_hub`库,这是使用`huggingface-cli`的前提: ```bash pip install huggingface_hub ``` 2. **下载数据集文件** 使用`huggingface-cli download`命令指定数据集名称和文件路径。例如,下载`glue`数据集中的`cola`子集文件: ```bash huggingface-cli download nyu-mll/glue --repo-type dataset --include "data/cola/*" ``` - `--repo-type dataset`: 指定仓库类型为数据集(默认为模型) - `--include`: 筛选需要下载的文件路径模式 - `--revision`: 指定数据集版本(可选) - `--cache-dir`: 自定义缓存目录(可选) 3. **登录(私有数据集)** 若需下载私有数据集,需先登录: ```bash huggingface-cli login ``` 输入账号的API Token完成认证[^4]。 4. **查看数据集结构(辅助步骤)** 建议先在[Hugging Face Hub](https://huggingface.co/datasets)查找数据集名称和文件路径。例如,`imdb`数据集的文件通常位于`data/*.parquet`。 --- ### 对比Python API方法 若需直接加载数据集到代码环境,使用`datasets`库更便捷: ```python from datasets import load_dataset dataset = load_dataset("imdb", split="train") ``` --- ### 常见问题解答 **Q1: 如何批量下载整个数据集?** 需明确数据集文件结构后使用通配符匹配,例如: ```bash huggingface-cli download imdb --repo-type dataset --include "data/*" ``` **Q2: 下载后的文件存储在哪里?** 默认缓存路径为`~/.cache/huggingface/datasets`,可通过`--cache-dir`自定义。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值