【图像隐藏】基于DWT与SVD算法实现数字水印嵌入提取附Matlab代码

本文介绍了一种基于离散小波变换(DWT)和奇异值分解(SVD)的数字水印算法,用于图像版权保护。该方法先对水印图像进行处理,再将水印嵌入到原始图像的SVD奇异值中,增强了水印的鲁棒性和不可见性,适用于数字图像版权保护。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 简介

研究数字图像版权保护问题,由于数字媒体在网上易被复制篡改.针对单纯奇异值分解或小波变换水印算法均存在抵抗攻击差的难题,为了更好的保护数字图像版权,提了一种奇异值分解与小波变换相结合的数字水印算法.首先对水印图像进行置乱处理并对原始图像进行分块,从中找到符合要求的最佳水印嵌入子块,然后对所选择的最佳子块进行小波变换,对子块的低频系数进行奇异值分解,最后将水印嵌入各子块的奇异值中进行仿真.结果表明,水印算法能够很好的抵抗多种攻击,水印具有很好的鲁棒性和不可见性,克服了奇异值分解和小波变换水印算法缺陷,为设计提供了依据.

​随着互联网普及,信息通讯技术的飞速发展,多媒体技术得到了充分的应用。但是开放的互联网使这些多媒体信息的传输变得不安全,而数字水印技术恰恰能保护这些多媒体信息的传输。数字水印技术通过一定的嵌入算法将一些可以用来标识多媒体数据的来源、版本、作者等标志性信息嵌入到多媒体数据中来保护多媒体数据的版权,但是不影响原始数据的使用和价值,并且不易被人察觉 。根据嵌入位置的不同,数字水印算法分为空域和变换域水印算法。一般而言,变换域水印算法稳健性较好,主要的变换域有离散余弦变换 ( discrete cosine transform DCT)、离散小波变换 ( discrete wavelet transform DWT)和离散傅立叶变换 ( discrete fourier transform DFT)。在变换域中奇异值分解(singular value decomposition SVD) 是一种将矩阵对角化的方法。图像的奇异值有较好的稳定性,利用这个原理可将水印信息嵌入到图像经过奇异值变换后的系数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值