✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容
图像压缩在图像处理和传输中至关重要,因为它可以显著减少图像文件的大小,同时保持图像的视觉质量。本文探讨了三种基于奇异值分解(SVD)的图像压缩方法:SVD、分块SVD和小波变换结合SVD。这些方法的压缩比和信噪比进行了比较,以评估其在图像压缩中的有效性。
引言
图像压缩旨在通过减少图像数据量来缩小图像文件的大小,同时尽可能保持图像的视觉质量。奇异值分解(SVD)是一种强大的线性代数技术,已被广泛应用于图像压缩中。SVD将图像分解为奇异值、左奇异向量和右奇异向量的乘积,这些分量可以用于重建图像。
基于奇异值分解(SVD)的图像压缩
SVD图像压缩的基本思想是截断奇异值。通过丢弃较小的奇异值,可以减少图像数据的量,从而实现压缩。压缩比由保留的奇异值的数量决定。
基于分块奇异值分解(SVD)的图像压缩
分块SVD图像压缩将图像划分为较小的块,然后对每个块应用SVD。这种方法可以提高压缩效率,因为不同的块具有不同的奇异值分布。
基于小波变换结合奇异值分解(SVD)的图像压缩
小波变换是一种时频分析技术,可以将图像分解为不同频率和方向的子带。将小波变换与SVD相结合可以进一步提高压缩效率。小波变换可以去除图像中的冗余信息,而SVD可以对去除冗余后的图像进行压缩。
实验结果
为了评估这些方法的性能,我们对一系列图像进行了实验。我们计算了不同压缩比下的压缩比和信噪比(PSNR)。
实验结果表明,分块SVD方法在压缩比和信噪比方面优于SVD方法。小波变换结合SVD方法进一步提高了压缩效率,同时保持了良好的信噪比。
结论
基于奇异值分解(SVD)的图像压缩方法是有效的图像压缩技术。分块SVD和结合小波变换的SVD方法可以提高压缩效率,同时保持良好的视觉质量。这些方法在图像处理和传输中具有广泛的应用前景。
📣 部分代码
%load
load wavedata.mat;
% 小波变换
[c,s] = wavedec2(sig_xsk,3,'db1');
index=zeros(10,1);
index(1)=1;
index(2)=index(1)+s(1,1)*s(1,2);
index(3)=index(2)+s(1,1)*s(1,2);
index(4)=index(3)+s(1,1)*s(1,2);
index(5)=index(4)+s(1,1)*s(1,2);
index(6)=index(5)+s(3,1)*s(3,2);
index(7)=index(6)+s(3,1)*s(3,2);
index(8)=index(7)+s(3,1)*s(3,2);
index(9)=index(8)+s(4,1)*s(4,2);
index(10)=index(9)+s(4,1)*s(4,2);
ca3=reshape(c(index(1):index(2)-1),s(1,1),s(1,2));
ch3=reshape(c(index(2):index(3)-1),s(1,1),s(1,2));
cv3=reshape(c(index(3):index(4)-1),s(1,1),s(1,2));
cd3=reshape(c(index(4):index(5)-1),s(1,1),s(1,2));
ch2=reshape(c(index(5):index(6)-1),s(3,1),s(3,2));
cv2=reshape(c(index(6):index(7)-1),s(3,1),s(3,2));
cd2=reshape(c(index(7):index(8)-1),s(3,1),s(3,2));
ch1=reshape(c(index(8):index(9)-1),s(4,1),s(4,2));
cv1=reshape(c(index(9):index(10)-1),s(4,1),s(4,2));
cd1=reshape(c(index(10):end),s(4,1),s(4,2));
call=cell(10,1);
call{1}=ca3;call{2}=ch3;call{3}=cv3;call{4}=cd3;call{5}=ch2;call{6}=cv2;call{7}=cd2;call{8}=ch1;call{9}=cv1;call{10}=cd1;
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类