✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
近年来,随着人工智能技术的快速发展,智能家居、智慧办公等概念逐渐深入人心,而室内人员检测作为智慧场景中的重要环节,其应用场景也日益广泛。毫米波雷达凭借其穿透性强、不受光线影响、可实现非接触式检测等优势,成为了室内人员检测的理想解决方案。本文将以德州仪器 (TI) 的毫米波雷达 IWR6843ISK 为例,探讨其在室内人员检测中的应用。
一、毫米波雷达技术原理
毫米波雷达是一种利用毫米波段电磁波进行目标探测和测距的无线电技术。其工作原理是发射特定频率的毫米波,并接收目标反射回来的信号,通过对信号进行分析处理,即可获得目标的位置、速度等信息。与传统红外、超声波等传感器相比,毫米波雷达具有以下优势:
-
穿透性强: 毫米波波长较短,能够穿透墙壁、玻璃等非金属物体,有效解决传统传感器易受遮挡的问题。
-
不受光线影响: 毫米波不受光线影响,能够在黑暗环境下正常工作,克服了红外传感器对光线敏感的缺点。
-
非接触式检测: 毫米波雷达能够实现非接触式检测,保护用户隐私,避免接触式传感器的卫生问题。
二、TI IWR6843ISK 雷达特点
TI IWR6843ISK 是一款高性能毫米波雷达芯片,专为汽车、工业自动化、智能家居等领域应用而设计。其主要特点包括:
-
高性能: 采用 77GHz 频率,拥有更高的灵敏度和更精确的距离分辨率,能够更准确地识别和定位目标。
-
低功耗: 采用低功耗架构,支持多种工作模式,有效降低功耗,延长设备续航时间。
-
集成度高: 集成发射/接收天线、信号处理单元、数字信号处理器等模块,简化系统设计,降低开发成本。
-
软件支持: 提供丰富的软件开发工具和应用示例,方便开发者快速上手,实现定制化应用开发。
三、室内人员检测方案设计
基于 TI IWR6843ISK 毫米波雷达,可以实现多种室内人员检测方案,例如:
-
人体存在检测: 通过对毫米波信号进行分析,识别人体反射信号特征,判断目标区域是否有人员存在。
-
人员计数: 通过跟踪人体运动轨迹,统计进出区域的人员数量,实现人员流动监测。
-
人员行为识别: 通过分析人体姿态和动作,识别特定行为,例如跌倒、徘徊、停留等。
四、应用场景及优势
TI IWR6843ISK 毫米波雷达在室内人员检测中具有广泛的应用场景,例如:
-
智能家居: 自动调节灯光、空调、窗帘等设备,提升家居舒适度。
-
智慧办公: 实现会议室占用情况监测、人员流量分析、自动控制空调等功能。
-
智慧零售: 监测店内人员流量,分析顾客行为,优化商品布局和营销策略。
-
公共安全: 监控人员聚集情况,预警人员拥挤风险,保障公共安全。
五、总结
TI IWR6843ISK 毫米波雷达凭借其高性能、低功耗、集成度高、软件支持丰富等优势,在室内人员检测方面展现出巨大潜力。通过合理的设计和开发,毫米波雷达能够有效解决传统传感器在室内人员检测方面的局限性,为智慧场景提供更准确、更可靠、更便捷的解决方案。未来,随着毫米波雷达技术的不断发展和应用场景的不断拓展,毫米波雷达必将在智能化时代发挥更加重要的作用。
⛳️ 运行结果
🔗 参考文献
[1] 张习之.一种基于KNN算法的毫米波雷达室内人员检测方法:202110629713[P][2024-06-09].
[2] 邬苏秦,王府圣,周川鸿,et al.基于深度学习的毫米波雷达人体摔倒检测系统研究[J].电子设计工程, 2024, 32(2):181-186.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类