✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🌿 往期回顾可以关注主页,点击搜索
🔥 内容介绍
惯性导航系统(INS)能够提供高频的姿态、速度和位置信息,但由于其自身存在的误差积累问题,长期运行后精度会显著下降。全球定位系统(GPS)能够提供高精度的绝对位置信息,但受限于信号遮挡等因素,其可用性受到限制。将INS和GPS系统进行组合,可以有效地弥补各自的不足,实现高精度、高可靠性的导航定位。本文将介绍基于无迹卡尔曼滤波(UKF)的INS/GPS松组合导航系统,探讨其在位置误差和速度误差方面的性能表现,并分析松组合方式的优势与不足。
1. 引言
随着导航技术的发展,对导航系统精度和可靠性的需求不断提高。传统的INS和GPS系统各有优缺点,无法满足现代导航应用的严格要求。将两者进行融合,可以实现优势互补,提高导航系统的整体性能。
INS/GPS组合导航系统根据信息融合方式的不同,可以分为紧组合、松组合和混合组合。其中,松组合方式以GPS作为辅助信息,对INS进行校正,不直接使用GPS的姿态信息,仅对INS输出进行约束。松组合方式具有计算量小、系统实现简单、抗干扰能力强等优点,在很多应用场景中得到广泛应用。
2. 无迹卡尔曼滤波UKF
卡尔曼滤波(KF)是一种常用的状态估计方法,在处理线性系统时表现出色。然而,在处理非线性系统时,KF的性能会受到很大影响,因为其对系统模型进行了线性化处理,会引入线性化误差。
无迹卡尔曼滤波(UKF)是卡尔曼滤波的一种改进算法,它利用无迹变换(UT)来近似非线性系统状态的后验概率分布。UT通过选取少量确定性采样点(sigma点)来近似非线性函数的分布,并利用这些采样点来计算状态的均值和协方差矩阵,从而避免了线性化误差。
3 UKF滤波算法
UKF滤波算法主要包含以下步骤:
-
初始化状态向量和协方差矩阵。
-
利用UT生成sigma点。
-
将sigma点通过INS状态方程进行时间更新。
-
将更新后的sigma点通过INS测量方程进行测量更新。
-
根据更新后的sigma点计算状态向量和协方差矩阵。
3.1 松组合方式
松组合方式仅利用GPS位置信息对INS进行校正,不直接使用GPS的姿态信息。其优点包括:
-
计算量小: 只需处理位置信息,计算量较小。
-
系统实现简单: 不需要考虑姿态信息,系统结构较为简单。
-
抗干扰能力强: 对GPS信号遮挡等干扰因素不敏感。
然而,松组合方式也存在一些不足:
-
精度有限: 无法利用GPS的姿态信息,精度相对较低。
-
无法实时估计姿态误差: 无法对INS的姿态误差进行实时估计。
4. 误差分析
INS/GPS松组合导航系统的误差主要来源于INS误差和GPS误差。
-
INS误差: 主要包括陀螺仪漂移、加速度计偏差、安装误差等。
-
GPS误差: 主要包括卫星信号误差、大气误差、多路径误差等。
UKF算法能够有效地抑制INS和GPS的误差,提高系统精度。
5. 实验结果与分析
为了验证基于UKF的INS/GPS松组合导航系统的性能,进行了仿真实验。实验结果表明:
-
UKF算法能够有效地抑制INS的误差积累,提高系统精度。
-
松组合方式能够有效地减小位置误差和速度误差,但精度相对紧组合方式较低。
6. 结论
本文介绍了基于无迹卡尔曼滤波UKF的INS/GPS松组合导航系统,并分析了其在位置误差和速度误差方面的性能表现。结果表明,UKF算法能够有效地抑制INS和GPS的误差,提高系统精度。松组合方式具有计算量小、系统实现简单、抗干扰能力强等优点,但精度相对紧组合方式较低。在实际应用中,应根据具体的应用场景选择合适的组合方式。
⛳️ 运行结果
🔗 参考文献
[1] 潘利鹏.基于低成本MEMS的SINS/GPS组合导航算法研究[D].沈阳理工大学,2015.
[2] 石波.非线性滤波理论及其在GPS/INS组合定位定姿中的应用研究[D].山东科技大学,2008.DOI:10.7666/d.D299278.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类