✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、期刊写作与指导,代码获取、论文复现及科研仿真私。
🍎更多Matlab代码及仿真定制内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
厄米-高斯光束 (Hermite-Gaussian Beam) 作为激光束的一种重要模式,在光学领域有着广泛的应用。它具有独特的空间分布和传输特性,例如良好的聚焦特性、低衍射特性等,使其在光学微操纵、光学显微镜、光束整形等方面发挥着重要作用。本文将详细阐述厄米-高斯光束的理论基础,并以Matlab编程语言为工具,实现对厄米-高斯光束的仿真,展示其空间分布和传播特性。
1. 厄米-高斯光束的理论基础
厄米-高斯光束是一种高斯光束的扩展形式,其电场分布可以用厄米多项式和高斯函数的乘积来描述。其表达式如下:
E(x, y, z) = A * H_m(x/w(z)) * H_n(y/w(z)) * exp(-(x^2 + y^2)/w(z)^2) * exp(ikz - ik(x^2 + y^2)/(2R(z)))
其中:
-
A为光束振幅,
-
w(z) 为光束腰半径,
-
R(z) 为光束曲率半径,
-
k 为波数,
-
H_m(x) 和 H_n(y) 分别为 m 阶和 n 阶厄米多项式。
厄米-高斯光束的阶数 (m, n) 决定了其空间分布的形状。当 (m, n) = (0, 0) 时,即为基模高斯光束,其空间分布为圆形对称。随着阶数的增加,光束的空间分布逐渐变得更加复杂,呈现出不同形状的瓣状结构。
2. Matlab实现厄米-高斯光束仿真
利用Matlab编程语言,可以轻松地实现厄米-高斯光束的仿真。主要步骤如下:
2.1 定义参数
首先需要定义一些参数,例如波长,光束腰半径,光束传播距离,厄米多项式阶数等。
2.2 生成空间坐标
利用 meshgrid
函数生成二维空间坐标网格,代表光束传播路径上的横截面。
2.3 计算光束强度
根据上述厄米-高斯光束公式,利用 hermite
函数计算厄米多项式,并代入公式计算光束强度。
2.4 绘制光束强度分布
利用 surf
或 contour
函数绘制光束强度分布图,直观地展示厄米-高斯光束的空间分布特征。
3. 仿真结果及分析
以下展示了不同阶数厄米-高斯光束的仿真结果:
-
基模高斯光束 (m, n) = (0, 0):空间分布呈圆形对称,没有出现瓣状结构。
-
厄米-高斯光束 (m, n) = (1, 0):空间分布呈水平方向的两个瓣状结构。
-
厄米-高斯光束 (m, n) = (0, 1):空间分布呈垂直方向的两个瓣状结构。
-
厄米-高斯光束 (m, n) = (1, 1):空间分布呈四个瓣状结构,分别位于四个象限。
通过仿真结果可以观察到,随着厄米-高斯光束阶数的增加,其空间分布呈现出更加复杂的形状,瓣状结构数量也随之增加。
4. 总结
本文介绍了厄米-高斯光束的基本理论和Matlab仿真实现方法。通过仿真结果,直观地展示了不同阶数厄米-高斯光束的空间分布特征,为进一步理解厄米-高斯光束的特性和应用提供了基础。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类