✅作者简介:热爱数据处理、建模、算法设计的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
一、 概述
六维力传感器能够同时测量三个方向的力和三个方向的力矩,在机器人操作、人机交互、医疗器械等领域有着广泛应用。然而,由于传感器结构的复杂性,六维力传感器往往存在着不同方向信号之间的耦合现象,即某一方向的力或力矩会影响其他方向的测量结果。为了准确识别和解耦不同方向的力/力矩信息,本文提出一种基于BP神经网络的解耦分类方法。
二、 六维力传感器解耦分类原理
六维力传感器解耦分类的目标是将传感器输出的六维信号分解成六个独立的力/力矩信息。传统的解耦方法主要依赖于传感器本身的结构和特性,如矩阵变换、最小二乘法等。但这些方法往往受到传感器非线性特性、误差累积等因素的影响,精度难以保证。
BP神经网络是一种常用的非线性函数逼近方法,具有很强的学习能力和泛化能力。本文采用BP神经网络进行六维力传感器解耦分类,其基本思路如下:
-
数据预处理: 对传感器采集的原始数据进行清洗、归一化等预处理操作,以便提高神经网络的训练效率和精度。
-
网络结构设计: 根据六维力传感器的输出信号特征,设计合适的BP神经网络结构,包括输入层、隐含层和输出层神经元的数量以及连接权重。
-
网络训练: 利用已知力/力矩信息作为训练样本,采用反向传播算法训练BP神经网络,使其能够学习六维力传感器信号与力/力矩信息之间的非线性映射关系。
-
解耦分类: 训练完成的神经网络可以对新的传感器输出信号进行解耦分类,即根据输入的六维信号预测出每个方向的力/力矩值。
三、 Matlab代码实现
% 数据准备
% 训练数据:X_train (N x 6),Y_train (N x 6)
% 测试数据:X_test (M x 6),Y_test (M x 6)
% 定义BP神经网络结构
net = feedforwardnet([10 10]); % 两个隐含层,每个层有10个神经元
net.trainParam.epochs = 100; % 最大训练次数
net.trainParam.goal = 1e-5; % 误差目标
% 训练神经网络
net = train(net, X_train', Y_train');
% 测试神经网络
Y_pred = net(X_test');
Y_pred = Y_pred';
% 评估模型性能
mse = mean((Y_test - Y_pred).^2);
rmse = sqrt(mse);
fprintf('MSE: %f\n', mse);
fprintf('RMSE: %f\n', rmse);
% 可视化结果
figure;
plot(Y_test(:, 1), Y_pred(:, 1), 'r*');
xlabel('真实力/力矩值');
ylabel('预测力/力矩值');
title('力/力矩解耦分类结果');
四、 实验结果与分析
本文利用实验数据对提出的BP神经网络解耦分类方法进行验证,并与传统的矩阵变换方法进行对比。结果表明,BP神经网络方法在处理非线性耦合问题方面具有明显优势,能够有效提升解耦分类精度。
五、 结论
本文提出了一种基于BP神经网络的六维力传感器解耦分类方法,并通过Matlab代码进行了实现。实验结果表明,该方法能够有效地解决传感器信号耦合问题,提高力/力矩信息识别精度。该方法具有广泛的应用前景,可以为机器人操作、人机交互等领域提供更加精确的力/力矩测量和控制手段。
⛳️ 运行结果
🔗 参考文献
[1] 姜力,刘宏,蔡鹤皋,等.基于神经网络的多维力传感器静态解耦的研究[J].中国机械工程, 2002, 13(24):4.DOI:10.3321/j.issn:1004-132X.2002.24.010.
[2] 王嘉力.微型六维力/力矩传感器及其自动标定的研究[D].哈尔滨工业大学,2009.DOI:CNKI:CDMD:1.2008.194838.
[3] 张家敏,许德章.基于蚁群BP神经网络算法的六维力传感器解耦研究[J].轻工机械, 2016, 34(1):5.DOI:IO.3969/j.issn.1005-2895.2016.01.001.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类