【图像压缩】基于Haar和小波变换实现图像压缩(含PSNR)附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

图像压缩技术在现代数字图像处理领域占据着至关重要的地位,其目标是在保证图像质量的前提下,尽可能地减少图像数据量,从而降低存储空间和传输带宽的需求。本文将深入探讨基于Haar和小波变换的图像压缩算法,分析其原理、实现方法以及性能评估,并通过峰值信噪比(PSNR)指标对压缩效果进行量化分析。

一、 Haar变换与图像压缩

Haar变换是一种最简单的正交变换,其变换基函数为一系列矩形脉冲函数。它具有计算简单、速度快的优点,尤其适合于实时图像处理应用。在图像压缩中,Haar变换通过将图像分解成不同频率的分量来实现压缩。低频分量包含图像的主要能量,而高频分量则包含图像的细节信息。通过对高频分量进行量化或舍弃,可以有效地减少数据量,实现图像压缩。

具体而言,Haar变换将图像分解成一系列不同尺度的子图像,每个子图像对应一个特定的频率范围。低频子图像包含图像的主要能量,而高频子图像包含图像的细节信息。通过对高频子图像进行量化或舍弃,可以有效地减少数据量,实现图像压缩。 压缩过程通常包括以下步骤:

  1. 正变换: 将原始图像进行Haar变换,将其分解成低频子图像和高频子图像。

  2. 量化: 对变换系数进行量化,将连续的变换系数转换为离散的数值,减少数据量。量化步长的大小直接影响压缩比和图像质量。

  3. 编码: 对量化后的变换系数进行编码,例如采用行程编码或熵编码等方法,进一步压缩数据量。

  4. 反变换: 解码后,将量化后的变换系数进行反变换,重建图像。

然而,Haar变换的局限性在于其基函数过于简单,无法有效地表达图像中的复杂细节信息,导致压缩比有限,且容易产生块效应。

二、 小波变换与图像压缩

小波变换是一种比Haar变换更强大的图像处理工具,它使用一系列具有良好局部化性质的小波基函数来表示图像。不同于Haar变换的矩形波,小波基函数具有更好的时间和频率局部化特性,可以更有效地表示图像中的细节信息。在图像压缩中,小波变换可以实现更高的压缩比,同时保持更好的图像质量。

小波变换通常采用多分辨率分析(MRA)的思想,将图像分解成一系列不同尺度的子图像,每个子图像对应一个特定的频率范围。通过对高频子图像进行量化或舍弃,可以有效地减少数据量,实现图像压缩。 小波变换的压缩过程与Haar变换类似,也包含正变换、量化、编码和反变换四个步骤。然而,由于小波基函数的优越性,小波变换能够更好地捕捉图像的细节信息,从而在相同的压缩比下获得更高的图像质量。常用的离散小波变换包括Daubechies小波、Symlets小波、Coiflets小波等。

三、 PSNR性能评估峰值信噪比(PSNR)是衡量压缩图像质量的重要指标,它反映了压缩图像与原始图像之间的差异程度。PSNR值越高,表示图像质量越好。PSNR的计算公式如下:

PSNR = 10 * log10( (MAX_I)^2 / MSE )

其中,MAX_I表示图像像素的最大值(例如,对于8位灰度图像,MAX_I = 255),MSE表示均方误差,计算公式为:

MSE = (1 / MN) * Σ(i=1 to M) Σ(j=1 to N) (I(i,j) - K(i,j))^2

其中,I(i,j)表示原始图像的像素值,K(i,j)表示压缩后图像的像素值,M和N分别表示图像的行列数。

通过计算PSNR值,可以客观地评价不同压缩算法的性能,并选择最佳的压缩参数。

四、 实验结果与分析

本文将通过实验比较Haar变换和小波变换在图像压缩中的性能差异。实验选取若干标准图像进行测试,并采用不同的量化步长,计算不同压缩比下的PSNR值。实验结果表明,在相同的压缩比下,基于小波变换的图像压缩算法通常比基于Haar变换的算法具有更高的PSNR值,表明其能够更好地保留图像细节信息,减少图像失真。 此外,实验结果还将显示不同的量化策略对PSNR值的影响,以及不同类型的小波基函数对压缩性能的影响。 具体的实验数据和图像将以图表的形式呈现,并进行详细的分析和讨论。

五、 结论与展望

本文详细介绍了基于Haar和小波变换的图像压缩算法,并通过PSNR指标对其性能进行了评估。实验结果表明,小波变换在图像压缩方面具有显著的优势,能够在更高的压缩比下获得更好的图像质量。然而,小波变换的计算复杂度也相对较高。未来的研究可以关注更高效的小波变换算法、自适应量化策略以及结合其他图像压缩技术的改进方法,以进一步提高图像压缩效率和图像质量。 此外,探索更先进的压缩感知理论和深度学习技术在图像压缩领域的应用,也将是未来研究的重要方向。

📣 部分代码

b;

clear PSNR;

A=double(A);

B=double(B);

sqi=(A-B).^2;

mse=sum(sum(sqi))/((size(A,1)*size(A,2)));

PSNR=10*log10(255^2/mse);

b=PSNR;

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

🌿 往期回顾可以关注主页,点击搜索

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值