【电力系统】基于ADMM算法的多微网协同优化调度附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着分布式能源(DERs)的快速发展和渗透,微电网作为一种灵活、高效的能源管理单元,在提高电力系统运行灵活性、增强电网可靠性以及促进可再生能源消纳方面展现出巨大的潜力。然而,单一微电网的优化调度往往局限于其内部资源,难以充分发挥分布式能源的协同效应。构建由多个微电网组成的微电网群(Multiple Microgrids, MMGs)并进行协同优化调度,能够实现能源在微电网之间的优化配置,提升整个系统的运行效率和经济性。传统的多微电网集中式优化调度方法需要一个中心控制器收集所有微电网的详细信息,存在隐私泄露、通信负担重以及计算复杂度高等问题。为了克服这些挑战,本文深入研究了基于交替方向乘子法(Alternating Direction Method of Multipliers, ADMM)的多微网协同优化调度方法。ADMM算法作为一种分布式优化技术,能够将复杂的全局优化问题分解为多个易于处理的局部子问题,并通过节点间的迭代通信协同求解,有效保护微电网的隐私,降低通信和计算负担。本文首先阐述了微电网群协同优化调度的必要性和优势,构建了基于ADMM算法的多微电网协同优化调度模型,包括目标函数、约束条件以及基于ADMM的算法分解和求解过程。随后,对ADMM算法在多微电网场景下的收敛性、隐私保护特性以及算法实现细节进行了详细分析。最后,通过仿真算例验证了基于ADMM算法的多微电网协同优化调度的有效性,并与传统方法进行了对比分析,展示了其在降低运行成本、提高能源利用效率以及保护隐私方面的优越性。研究结果表明,基于ADMM算法的多微电网协同优化调度是实现大规模分布式能源高效协同运行的有效途径,为未来电力系统向更加智能、灵活和分布式方向发展提供了理论和技术支撑。

关键词: 微电网群;协同优化调度;分布式优化;ADMM算法;分布式能源;隐私保护

第一章 引言

1.1 研究背景

全球气候变化和能源危机日益严峻,推动着各国大力发展和利用可再生能源。风能、太阳能等分布式能源具有清洁、可持续的特点,但其固有的间歇性和波动性给传统电力系统的运行带来了严峻挑战。微电网作为一种将分布式电源、负荷、储能装置和能量转换装置集成为一个可控整体的新型电力系统架构,能够实现分布式能源的就地消纳和高效利用,增强电网对可再生能源的接纳能力。

近年来,随着微电网技术的不断成熟和规模化应用,单一微电网的优化调度已不能满足日益增长的能源协同需求。构建由多个地理位置邻近或功能相关的微电网组成的微电网群,并通过协同优化调度实现微电网之间的能源互补、优化配置和高效互动,成为提升整个电力系统运行效率和经济性的重要发展方向。微电网群的协同优化调度能够充分挖掘分布式能源的潜力,实现能源的“源-网-荷-储”一体化协同,降低系统总运行成本,提高供电可靠性和弹性。

1.2 问题描述

多微电网协同优化调度旨在通过优化各微电网内部资源(如分布式电源出力、储能系统充放电、可控负荷调节等)以及微电网之间的能源交换,使得整个微电网群在满足各微电网内部约束和微电网之间互联约束的前提下,实现设定的优化目标,例如最小化总运行成本、最大化可再生能源消纳等。

传统的集中式协同优化调度方法需要一个中心调度器收集各微电网的所有详细信息,如负荷预测、分布式电源出力预测、设备运行参数、内部约束等。然后,中心调度器构建一个包含所有微电网变量和约束的全局优化模型进行求解。这种方法虽然能够获得全局最优解,但也存在以下突出问题:

  • 隐私泄露风险:

     各微电网的详细内部信息需要上传至中心调度器,存在敏感数据泄露的风险,这对于商业微电网或具有数据安全要求的微电网来说是不可接受的。

  • 通信负担重:

     大量的内部信息需要上传,以及优化结果需要下发,导致中心调度器与各微电网之间的通信量巨大,特别是在微电网数量众多或地理位置分散的情况下,通信网络面临巨大压力。

  • 计算复杂度高:

     随着微电网数量和内部设备的增加,全局优化模型的维度急剧膨胀,导致求解难度和计算时间显著增加,难以满足实时调度的需求。

  • 系统脆弱性:

     中心调度器的单点故障可能导致整个微电网群的调度系统瘫痪。

为了克服传统集中式方法的弊端,研究分布式和分散式协同优化调度方法具有重要意义。

1.3 文献综述

近年来,国内外学者在多微电网协同优化调度方面开展了广泛研究。早期的研究主要采用集中式优化方法,利用线性规划、混合整数线性规划等技术对多微电网进行建模和求解。然而,随着对隐私保护和分布式特性的关注,基于分布式优化算法的研究逐渐兴起。

现有研究中,常用的分布式优化算法包括基于分解协调的方法(如拉格朗日松弛法)、一致性算法(如原始-对偶算法)以及基于增广拉格朗日函数的方法(如ADMM算法)。

基于拉格朗日松弛法的方法将全局问题分解为多个子问题,通过迭代调整拉格朗日乘子来协调子问题之间的耦合约束。这种方法实现相对简单,但收敛速度可能较慢,且对问题的凸性要求较高。

一致性算法通过节点间的局部信息交换,使得各节点的状态最终达到一致,从而求解全局优化问题。原始-对偶算法是常见的一致性算法,通过迭代更新原始变量和对偶变量来实现分布式求解。

ADMM算法是一种介于原始分解法和对偶分解法之间的分布式优化算法,它利用增广拉格朗日函数,将原问题分解为多个子问题,并通过引入乘子和罚项来协调子问题。ADMM算法因其良好的收敛性、对非光滑问题的适用性以及易于实现等优点,在电力系统分布式优化领域得到了广泛关注和应用。许多研究开始探索ADMM算法在微电网协同优化调度中的应用,例如用于优化微电网之间的能量交易、共享储能系统的调度以及协调需求侧响应等。然而,将ADMM算法系统地应用于整个微电网群的整体协同优化调度,并深入分析其在实际应用中面临的挑战(如参数选择、通信延迟等)以及优势(如隐私保护、计算效率提升),仍有待进一步研究。

1.4 研究内容与结构

本文旨在研究基于ADMM算法的多微电网协同优化调度方法,构建相应的优化模型和算法,并进行仿真验证。本文的主要研究内容包括:

  1. 分析多微电网协同优化调度的必要性和优势,阐述传统集中式方法的不足。

  2. 构建基于ADMM算法的多微电网协同优化调度模型,包括各微电网内部优化模型和微电网之间的互联约束。

  3. 详细阐述基于ADMM算法的求解过程,包括问题的分解、各微电网子问题的求解以及乘子和原始变量的迭代更新。

  4. 分析ADMM算法在多微电网场景下的收敛性、隐私保护特性以及算法实现的关键细节。

  5. 通过仿真算例验证基于ADMM算法的多微电网协同优化调度的有效性,并与传统方法进行对比分析。

本文结构安排如下:

  • 第一章:引言,介绍研究背景、问题描述、文献综述以及研究内容。

  • 第二章:多微电网协同优化调度问题建模,详细阐述各微电网内部模型和互联约束。

  • 第三章:基于ADMM算法的多微电网协同优化求解,详细介绍ADMM算法原理及其在多微电网场景下的应用。

  • 第四章:ADMM算法特性分析,探讨算法的收敛性、隐私保护能力及实现细节。

  • 第五章:算例分析与结果讨论,通过仿真验证算法的有效性。

  • 第六章:结论与展望,总结本文研究成果并提出未来研究方向。

ADMM算法的优点在于其收敛性相对较好,对问题的一些非光滑性质也有一定的容忍度,并且能够将全局问题分解为可并行计算的子问题,非常适合分布式计算环境。

3.2 多微电网协同优化问题的ADMM分解

为了将多微电网协同优化问题应用于ADMM算法求解,需要将全局问题转化为具有可分离结构的 ADMM 标准形式。微电网之间的互联约束是耦合各微电网子问题的关键。我们将每个微电网的内部变量作为一组局部变量,而微电网之间的交换功率作为耦合变量。

⛳️ 运行结果

🔗 参考文献

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

天天Matlab科研工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值