故障诊断模型 | 基于交叉注意力融合时频特征的轴承故障诊断模型

本文介绍了一种基于交叉注意力融合时频特征的轴承故障诊断模型,结合信号处理、深度学习和注意力机制,提高了故障识别的准确性和效率。模型包括信号预处理、特征提取、交叉注意力融合和故障分类,适用于复杂环境下的轴承故障诊断。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于交叉注意力融合时频特征的轴承故障诊断模型是一种先进的诊断方法,结合了信号处理、深度学习和注意力机制等多种技术,以提高轴承故障识别的准确性和效率。

一、模型概述

该模型主要利用交叉注意力机制融合时域和频域的特征,通过深度学习算法对轴承的振动信号进行处理和分析,实现故障的准确诊断。模型的整体结构包括信号预处理、特征提取、交叉注意力融合和故障分类等部分。

二、信号预处理

首先,对采集到的轴承振动信号进行预处理,包括去噪、滤波和归一化等操作,以消除信号中的干扰成分,提高信号质量。

三、特征提取

接下来,利用快速傅里叶变换(FFT)将预处理后的时域信号转换为频域信号,提取出信号的频谱特征。同时,对时域信号进行卷积神经网络(CNN)操作,提取出时域特征。这样,模型就同时获得了时域和频域的特征信息。

四、交叉注意力融合

在特征提取的基础上,利用交叉注意力机制对时域和频域特征进行融合。通过计算注意力权重,使模型能够关注到更重要的特征信息,增强对故障特征的识别能力。交叉注意力机制的实现可以通过多层感知机(MLP)或自注意力机制等方式来完成。

五、故障分类

最后,将融合后的特征输入到分类器中进行故障分类。分类器可以采用支持向量机(SVM)、随机森林或深度学习模型等算法。通过训练和优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Matlab建模攻城师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值