【YOLOv5 Note-3】前馈(feed-forward)神经网络层

本文详细介绍了如何在PyTorch中创建一个名为FeedForward的自定义神经网络层,它继承自nn.Module,包含线性层、SiLU激活函数、Dropout正则化,以及forward函数的实现过程。
摘要由CSDN通过智能技术生成

类定义

class FeedForward(nn.Module):
  • FeedForward 类继承自 nn.Modulenn.Module是PyTorch中所有神经网络模块的基类。
  • nn.Module允许您创建自己的神经网络层。

nn.Module 是构建所有神经网络层和模型的基类。当创建一个类继承自 nn.Module时,意味着你在创建一个自定义的神经网络层或整个神经网络模型。

构造函数 __init__

def __init__(self, dim, hidden_dim, dropout=0.):
  • 构造函数用于初始化 FeedForward 类的实例。
  • dim: 输入和输出的维度。
  • hidden_dim: 隐藏层的维度。
  • dropout: Dropout率,用于正则化以防止过拟合,默认值为0。

网络结构

self.net = nn.Sequential( nn.Linear(dim, hidden_dim), nn.SiLU(), nn.Dropout(dropout), nn.Linear(hidden_dim, dim), nn.Dropout(dropout) )
  • 使用 nn.Sequential 来定义一个简单的序列模型。
  • nn.Linear(dim, hidden_dim): 第一个线性层,将输入的维度从 dim 转换到 hidden_dim
  • nn.SiLU(): 激活函数,SiLU(Sigmoid Linear Unit),也称为Swish激活函数。
  • nn.Dropout(dropout): 应用dropout正则化。
  • nn.Linear(hidden_dim, dim): 第二个线性层,将维度从 hidden_dim 转换回 dim
  • nn.Dropout(dropout): 再次应用dropout正则化。

前向传播函数 forward

def forward(self, x): return self.net(x)
  • forward 函数定义了数据通过网络的方式。
  • x 是输入数据。
  • self.net(x) 通过之前定义的序列模型(即网络结构)处理 x,然后返回结果。

完整代码:

class FeedForward(nn.Module):
    def __init__(self, dim, hidden_dim, dropout=0.):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(dim, hidden_dim),
            nn.SiLU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_dim, dim),
            nn.Dropout(dropout)
        )
    
    def forward(self, x):
        return self.net(x)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值