transformer feedForward实现代码

在Transformer模型中,Feed Forward Neural Network (FFNN) 是由两个线性层和一个非线性激活函数(通常是ReLU)组成的。以下是使用PyTorch实现Transformer中Feed Forward部分的示例代码:

python复制代码

import torch  
import torch.nn as nn  
import torch.nn.functional as F  
  
class FeedForward(nn.Module):  
    def __init__(self, d_model, d_ff, dropout=0.1):  
        super(FeedForward, self).__init__()  
        # 两个线性层:第一层将输入维度d_model映射到d_ff,第二层将d_ff映射回d_model  
        self.linear1 = nn.Linear(d_model, d_ff)  
        self.dropout = nn.Dropout(dropout)  
        self.linear2 = nn.Linear(d_ff, d_model)  
  
    def forward(self, x):  
        # 第一个线性层  
        x = self.linear1(x)  
        # 应用ReLU激活函数  
        x = F.relu(x)  
        # 应用dropout  
        x = self.dropout(x)  
        # 第二个线性层  
        x = self.linear2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值