小车倒立摆系统的滑模变结构稳摆控制

题目

 设计滑模变结构控制器,实现对小车倒立摆系统的稳摆控制,给出小车位移、摆杆位移、小车速度、摆杆角度的变化曲线。小车倒立摆系统的参数如图所示。

动力学建模

运用拉格朗日方程进行建模

根据拉格朗日方程进行建模:

线性化

对上面得到的方程进行线性化,由于我们的控制目标是保持小球稳定在0°左右,所以可以对正弦,余弦进行线性化

\sin \theta \approx \theta                     \cos \theta \approx 1              \theta \approx 0

为方便接下来计算令F=U+W,那么线性化后方程为:

F=(M+m)\ddot{x}+ml\ddot{\theta }

mgl\theta=ml²\ddot{\theta }+ml\ddot{x}

带入题目所给参数通过这两个等式可以解得:

\ddot{X}= F-\theta

\ddot{\theta }= 22\theta -2F

写成状态方程:

具体可以看这篇文章https://blog.csdn.net/MinimalControl/article/details/137525796

进行3D建模

可以按照这个视频建立模型:

【小车倒立摆最优控制教程 - Part1 Simulink Simscape Multibody仿真建模】 https://www.bilibili.com/video/BV19M4y1E799/?share_source=copy_web

simulink中是这样的:

设计滑模控制器

滑模控制(Sliding Mode Control, SMC)是一种在处理非线性系统时非常有效的控制技术。它通过驱动系统状态达到并保持在特定的滑模面附近,来实现控制目标。滑模控制的基本思想是设计一个滑模面,使得一旦系统状态达到该滑模面,它们将保持在滑模面附近运动。滑模控制分为两个阶段:趋近阶段和滑动阶段。

趋近阶段:系统状态从任意初始状态趋近滑模面。

滑动阶段:一旦系统状态达到滑模面,它们将在滑模面上运动,对外部扰动和不确定性不敏感。

滑模面的设计是滑模控制的关键步骤。滑模面S(x)通常被设计为状态变量的线性组合:

S(x) = Cx

对于S(x)求导可得趋近率,趋近率一般有如下几种设计:

根据求导后S(x)的表达式与自己设计的趋近率可以解出控制器表达式。

综上可以设计滑模控制器:

在simulink中可以设计控制器:

 

关于滑模控制器可以参考这篇文章:

自动控制:滑模控制(Sliding Mode Control, SMC)-CSDN博客 

 结果

把滑模控制器和倒立摆模型连接得:

 给系统赋值:

通过示波器可以看出控制效果不错:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值