具身智能
一、具身智能概述
Embodied AI:集成环境理解、智能交互、认知推理、规划执行于一体的系统化方案。简单来说,具身智能就是将AI融入到机器人等物理实体,赋予它们感知、学习和环境动态交互的能力。【1】具身智能强调的是智能体在物理世界中的存在和行为,而不仅仅是解决抽象问题。【2】
Embodied AI: A systematic solution that integrates environmental understanding, intelligent interaction, cognitive reasoning, and planning execution. Simply put, embodied intelligence is the integration of AI into physical entities such as robots, giving them the ability to perceive, learn, and dynamically interact with the environment. [1] Embodied intelligence emphasizes the existence and behavior of intelligent agents in the physical world, rather than just solving abstract problems.
2005 年提出的“具身假说”(Embodiment Hypothesis)是从认知科学的角度对智能的理解提出了新的视角【3】。这一理论主张,人类的认知过程不仅仅是大脑内部的抽象思考,更多地是通过身体与物理环境的直接互动实现的。
二、具身智能的三大原则
此前的基础研究提出了关于具身智能的三个原则,如下:
(1)具身智能系统不能依赖预定义的复杂逻辑来管理特定场景
EAI 系统应当能够灵活应对多变的环境,而不是仅仅执行固定的、预设的程序。这要求系统能够在没有详尽预设条件的情况下,通过实时的感知和处理,对环境做出反应。例如,一个自动导航的机器人,在未知的环境中,应当能够根据当前的障碍物和地形,实时规划出最佳的行进路线,而不是单纯依赖于预先编程好的路径。
GPT-4、BERT 等基础大模型使机器人能够通过理解上下文、物体和指令来执行复杂的任务,更接近于人机交互。这些基础模型也符合 EAI 系统设计的原则一,也就是说模型不依赖于预定义的特定场景的逻辑,具有普适性。但是它们本身并没有解决机器人如何从物理环境中持续学习和适应的问题。为了真正实现自适应的 EAI 系统,必须将这些基础模型与进化学习机制相结合,通过不断的试验和错误来优化行为策略。此外,因为获取真实世界的交互成本极高,我们还需要开发一个虚拟环境