离散数学·代数结构【代数系统的同态与同构、同余关系与商代数】

练习放在文末

同态映射 

这里算是重点(老师在这里讲了很长时间,而且这里比较抽象)

找到的一个比较好的解释

同态像

同态象 <f(S),∗′,Δ′,k′> ,是代数系统 A′=<S′,∗′,Δ′,k′> 的子代数(该条是一个定理,下面会有证明)

我的理解就是A的元素通过  f  关系变成  f(A),然后f(A)是已经映射到B上的了,那么f(A)应该是与B中的运算符相关的,所以是<f(S),∗′,Δ′,k′>。而象的概念在之前二元关系这一章有(A的象是ran(F限制A)),所以同态象的定义即是<f(S),∗′,Δ′,k′>是V1的同态象

说明

同态映射的分类

同构就是f是双射

实例

性质

同余关系与同余类

a~b——f(a)=f(b)

运算上的同余关系:

设A=<S,*,Δ>是一个代数系统,~是载体S上的等价关系,任取a,b,c∈S。
(1)当a~b时,若Δa~Δb,则等价关系~在一元运算Δ下是可保持的,称~是关于运算Δ的同余关系。
(2)当a~b和c~d时,若有a*c~b*d,则等价关系~在二元运算*下是可保持的,称~是关于运算*的同余关系。
等价关系在运算下的可保持性是指参与运算的对应元素,如果在同一个等价类中,则运算后所得的结果也必在同一个等价类中

代数系统上的同余关系:

设A=<S,*,Δ>是一个代数系统,~是载体S上的等价关系,若~在A上的所有运算下都是可保持的,则称~为代数系统A上的同余关系。 同余关系使得元素所在的等价类在运算上可以作为一个整体来看待

设g是从代数系统A=<S,*,Δ,k>到A’=<S’,*’,Δ’,k’>的一个同态映射,如果在A上定义等价关系R为:<a,b>∈R,当且仅当g(a)=g(b),则R是A上的一个同余关系。
证明:

(i)若a~b,则g(a)=g(b),Δ’g(a)=Δ’g(b)。又g是从A到A’的同态映射,所以有Δ’g(a)=g(Δa)=Δ’g(b)=g(Δb) 故Δa~Δb,这说明~在运算Δ下是可保持的。

(ii)若a~b且c~d,且有g(a)=g(b),g(c)=g(d),所以 g(a)*’g(c)=g(b)*’g(d),又因g是从A到A’的同态映射,所以有g(a)*’g(c)=g(a*c)=g(b)*’g(d)=g(b*d),故a*c~b*d,这说明等价关系~在运算*下是可保持的。

由(i)(ii)可得,~是代数系统A上的同余关系

商代数

例子

性质

不一定满足消去律

例题

先找自同态

要证明R是f导出的同余关系,需要证明——当有a~b,f(a)~f(b)

这个(4)的原理是 任何商代数都是同态像 ,所以证明同态像为V1,然后知道f导出的R,就知道(V1*V2)/R和V1同构

练习

11题

这道题的解法应该不是很规范,看看就行

14题

这道题没难度

16题

没有难度

20题

首先,证明同态映射(也要满足代数常元);接着,易知满射

之前,写得不太好

要证明满同态,应该是像题目中这样,同态映射的基础上(而且取值那里也要两边也要一致),然后f(x)知道满射

看看怎么证明同态映射,对应好相应的运算符,然后,进行同态映射

24题

这个题做法就是看——f(x*x)=x*x(受条件限制,无法展示得很贴切,但是应该能看懂我的意思)

(3)属于零同态,但(4)不是同态

29题

好好看(1),当然也不一定非要这么做,证明右边等于左边也可以。重要的是清楚证明同态的过程

第2问主要是通过商集导出划分,而商集需要等价关系,而等价关系可以通过同余关系得知(mod2易知满足同余关系),之后的步骤就很清晰了

30题

看看第(2)问,确定商代数

1.看n是否为0

2.确定商代数的运算符,关于这个,如果给出了具体的元素时,自设一个运算符,然后用运算表;但是像这道题这样的

  • 4
    点赞
  • 46
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值