YOLOV8改进——使用FasterBlock替换C2f中的Bottleneck

参考博客:【保姆级教程|YOLOv8改进】【3】使用FasterBlock替换C2f中的Bottleneck_yolo 修改c2f中bottleblock模块-CSDN博客

在ultralytics/cfg/datasets/ 下新建data.yaml

path: D:/Desktop/fire_smoke_dataset(1)
train: D:/Desktop/fire_smoke_dataset(1)/images/train
 
val: D:/Desktop/fire_smoke_dataset(1)/images/val
 
nc : 2
names:
  0: fire
  1: smoke

main.py训练:

#coding:utf-8
from ultralytics import YOLO

model = YOLO("ultralytics/cfg/models/v8/c2f_Faster_yolov8.yaml").load('yolov8n.pt')

# Use the model
if __name__ == '__main__':
    # Use the model
    results = model.train(data='ultralytics/cfg/datasets/data.yaml', epochs=100, batch=4,device='0',workers=1,amp=False)  # 训练模型
    # 将模型转为onnx格式
    # success = model.export(format='onnx')

训练结果:

与没有改进的结果相比:

效果不好。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值