【RAG 知识树】从原理到应用的结构化认知地图

目录

🧠 一、RAG 的核心定义

🧩 二、RAG 的组成结构(模块视角)

1. 📄 文档预处理(Document Preprocessing)

2. 🔢 向量化(Embedding)

3. 🗃️ 检索器(Retriever)

4. 🤖 生成器(Generator)

5. 🧱 Prompt 构造器(Prompt Builder)

6. 🧠 记忆与多轮(可选扩展)

🌿 三、RAG 的流程图(知识流程路径)

📚 四、RAG 的典型应用场景(应用枝干)

🛠 五、常见工具栈(实现层支干)

🔧 向量数据库:

🧠 Embedding 模型:

🧩 框架工具:

🧭 六、RAG 的进阶方向(演化枝干)

✅ 1. Multi-Retriever(多源检索)

✅ 2. Re-ranking(重排序)

✅ 3. Query Rewriting(查询重写)

✅ 4. 多文档摘要(Multi-doc QA)

✅ 5. 自我反馈优化(RAG-Fusion / RAGAS)

🧮 七、RAG 与 Fine-tune 对比(知识融合)

🧠 八、RAG 知识图谱总结图(结构导图)


RAG(检索增强生成)是连接 大语言模型(LLM)能力外部知识源 的桥梁,是现代智能问答、企业知识搜索、个性助手背后的核心技术。


🧠 一、RAG 的核心定义

RAG(Retrieval-Augmented Generation) 是一种结合了:

  • 信息检索(Retrieval)

  • 语言生成(Generation)

的混合架构,让语言模型可以在回答问题时访问外部知识库,从而弥补 LLM 的知识更新滞后记忆能力有限的问题。


🧩 二、RAG 的组成结构(模块视角)

我们可以将一个 RAG 系统拆分为以下 六大核心模块,它们构成了 RAG 知识树的“主干”:

1. 📄 文档预处理(Document Preprocessing)

  • 文档切分(Chunking):按段落/语义进行切片(如500 tokens)

  • 文本清洗(清除HTML、格式统一)

  • 可选:结构提取(表格/代码/标题识别)


2. 🔢 向量化(Embedding)

  • 使用 Embedding 模型(如 OpenAI, DashScope, BGE)将文本块转换为向量

  • 保留 metadata(来源、标题、时间等)


3. 🗃️ 检索器(Retriever)

  • 典型是向量数据库(如 FAISS, Weaviate, Milvus)

  • 基于相似度或 Hybrid 检索(向量 + 关键词 BM25)

  • 支持:Top-k、过滤条件、Re-ranking(reranker)


4. 🤖 生成器(Generator)

  • 基于大语言模型(GPT、ChatGLM、Claude 等)

  • 将检索结果 + 用户问题 构造成 prompt,生成最终回答

  • 常见模板:Question + Context → Answer


5. 🧱 Prompt 构造器(Prompt Builder)

  • 用于构建合适格式的输入 prompt

  • 支持格式化、插入参考来源、角色设定

  • 模板类型:

    • Stuff(直接拼接)

    • Map-Reduce

    • Refine

    • Custom Prompt


6. 🧠 记忆与多轮(可选扩展)

  • 多轮问答上下文管理(Chat History)

  • 意图识别、话题跟踪、查询改写

  • Memory: Buffer、Summary、VectorMemory


🌿 三、RAG 的流程图(知识流程路径)


📚 四、RAG 的典型应用场景(应用枝干)

应用场景说明
📖 企业知识库问答让员工基于内部资料问答,不用训练模型
🏥 医疗智能助手实时引用医学文献/指南生成专业回答
📰 新闻摘要/引用引入检索材料增强事实性,防止“幻觉”
💬 多轮对话机器人保留历史上下文 + 增强事实回答
🔍 法律文书分析精确引用法规、判例,生成合法意见
🧠 个人知识库助手基于 Notion、Roam、Obsidian 构建私人问答系统


🛠 五、常见工具栈(实现层支干)

🔧 向量数据库:

  • FAISS(轻量本地)

  • Chroma(社区活跃)

  • Weaviate、Milvus(企业级)

  • Qdrant(性能稳定)

🧠 Embedding 模型:

  • OpenAI text-embedding-3

  • 阿里百炼 text-embedding-v1

  • BAAI/BGE

  • Cohere、E5

🧩 框架工具:

  • LangChain(组件齐全、生态好)

  • LlamaIndex(文档驱动、强检索)

  • Haystack(搜索引擎取向)

  • RAGAS(评估工具)

  • DSPy(程序化优化RAG)


🧭 六、RAG 的进阶方向(演化枝干)

✅ 1. Multi-Retriever(多源检索)

同时连接:向量库 + 知识图谱 + 网页 + SQL

✅ 2. Re-ranking(重排序)

使用模型(如 BGE-reranker)对 Top-k 检索结果排序

✅ 3. Query Rewriting(查询重写)

对用户提问进行增强 → 提升召回效果

✅ 4. 多文档摘要(Multi-doc QA)

支持从多篇文档中聚合信息、生成统一答案

✅ 5. 自我反馈优化(RAG-Fusion / RAGAS)

评估生成结果 + 检索质量 → 自动调整策略


🧮 七、RAG 与 Fine-tune 对比(知识融合)

项目RAG(检索增强)Fine-tune(微调)
知识更新频率即时更新,改文档即可需重新训练模型
构建成本较低(无需改模型)高(需 GPU 训练、调参)
控制生成内容可控(明确引用来源)难控(训练数据融入后不可拆解)
幻觉率更低,引用文档降低幻觉概率相对较高(纯生成)
使用场景问答、摘要、助手、检索型系统语气调优、特定领域表达、写作风格适配等


🧠 八、RAG 知识图谱总结图(结构导图)

RAG 知识树
├── 原理:检索 + 生成
├── 核心模块
│   ├── 文档处理
│   ├── 向量化
│   ├── 检索器
│   ├── Prompt 构造
│   ├── 生成器(LLM)
│   └── 记忆模块(可选)
├── 实现工具栈
│   ├── LangChain
│   ├── LlamaIndex
│   └── 向量数据库(FAISS/Chroma/...)
├── 应用场景
│   ├── 知识问答助手
│   ├── 企业搜索
│   └── 医疗、法律、教育等
├── 高级功能
│   ├── Query Rewriting
│   ├── Re-ranking
│   └── 多模态 RAG(图像 + 文本)
└── 演化趋势
    ├── 自适应反馈优化
    └── 结合 LangGraph / DSPy 等流程优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值