ubantu部署yolov5(第四集:模型加速)

参考链接:

GitHub - ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite

TFLite,ONNX,CoreML,TensorRT Export -Ultralytics YOLO Docs

使用Neural Magic 的 DeepSparse 部署YOLOv5 -Ultralytics YOLO 文档

sparseml/integrations/ultralytics-yolov5/tutorials/sparse-transfer-learning.md at main · neuralmagic/sparseml · GitHub

一、转化格式加速推理

1.YOLOv5 正式支持 12 种格式的推理:

2.导出训练有素的YOLOv5 模型

将自己训练好的模型文件如yolov5s.pt导出为torchscript onnx。经过我的测试onnx和openvino是最快的。

python export.py --weights yolov5s.pt --include torchscript onnx

3.导出后使用示例

二、使用DeepSparse + onnx加速推理

1.安装 DeepSparse

pip install "deepsparse[server,yolo,onnxruntime]"

2.Python 应用程序接口

将model_path替换为自己的onnx模型所在的位置。

import cv2
import time
from deepsparse import Pipeline

# 视频文件路径,需替换为你的实际视频路径
video_path = "/home/yzh/yolo_v5/yolov5/2.mp4"
cap = cv2.VideoCapture(video_path)

# create Pipeline
# 使用自定义 ONNX 模型路径
# model_path = "/home/yzh/yolo_v5/yolov5/runs/train/exp6/weights/best_1.onnx"
model_path = "/home/yzh/yolo_v5/yolov5/yolov5_runs/train/exp6/DeepSparse_Deployment/model.onnx"

yolo_pipeline = Pipeline.create(
    task="yolo",
    model_path=model_path,
    # image_size=(320, 320),  # 输入图像大小
    # batch_size=32,  # 批处理大小
)

prev_time = 0
# 初始化总推理时间和总推理次数
total_inference_time = 0
total_inference_count = 0

while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break

    # 将 BGR 格式的 OpenCV 图像转换为 RGB 格式
    rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

    # 执行推理
    start_time = time.time()
    pipeline_outputs = yolo_pipeline(images=[rgb_frame], iou_thres=0.6, conf_thres=0.2)
    end_time = time.time()
    inference_time = (end_time - start_time) * 1000
    print(f"推理时间: {inference_time:.2f} ms")

    # 更新总推理时间和总推理次数
    total_inference_time += inference_time
    total_inference_count += 1

    # 计算实时平均推理速度
    average_inference_speed = total_inference_time / total_inference_count
    print(f"实时平均推理速度: {average_inference_speed:.2f} ms")

    # 获取检测结果
    boxes = pipeline_outputs.boxes[0]  # 假设只有一个图像输入
    scores = pipeline_outputs.scores[0]
    labels = pipeline_outputs.labels[0]

    # 绘制边界框和标签
    for box, score, label in zip(boxes, scores, labels):
        x1, y1, x2, y2 = map(int, box)
        confidence = float(score)
        class_id = int(label)
        # 绘制边界框
        cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
        # 绘制标签和置信度
        label_text = f"{class_id}: {confidence:.2f}"
        cv2.putText(frame, label_text, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

    # 计算 FPS
    fps = 1 / (end_time - start_time)
    prev_time = end_time

    # 在帧上绘制 FPS
    cv2.putText(frame, f"FPS: {fps:.2f}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

    # 显示帧
    cv2.imshow('Video Inference', frame)

    # 按 'q' 键退出循环
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# 释放资源
cap.release()
cv2.destroyAllWindows()

之后直接运行这个脚本那文件,就可以使用DeepSparse加速了。加速效果明显,大概1.5倍。

三、DeepSparse 稀疏性能

文档上介绍效率很高,但是我实际使用感觉除了模型变小了一点,其他没有什么太大区别。

1.安装python库文件

pip install "sparseml[yolov5]"

2.开始训练

(1)语法

(2)一个例子

recipe_type 这个是稀疏化的配置直接从官网下,weights这个稀疏化权重也是直接从官网下,你只需要把--data改成自己的数据集的配置文件就可以了。如果太卡,还要改--batchsize。

sparseml.yolov5.train \
  --weights zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned75_quant-none?recipe_type=transfer_learn \
  --recipe zoo:cv/detection/yolov5-s/pytorch/ultralytics/coco/pruned75_quant-none?recipe_type=transfer_learn \
  --data VOC.yaml \
  --patience 0 \
  --cfg yolov5s.yaml \
  --hyp hyps/hyp.finetune.yaml

3.导出模型

sparseml.yolov5.export_onnx \
  --weights yolov5_runs/train/exp/weights/last.pt \
  --dynamic

模型导出后,将onnx的路径加到上述二的脚本文件里面,直接运行。但是确实效率没提升多少,onnx的规模确实是下降了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值