欧拉方程

变系数的线性微分方程,一般来说都是不容易求解的。但是有些特殊的变系数线性微分方程,则可以通过变量代换化为常系数微分方程,因而容易求解,欧拉方程就是其中一类。

形如
x n y ( n ) + p 1 x n − 1 y ( n − 1 ) + ⋅ ⋅ ⋅ + p n − 1 x y ′ + p n y = f ( x ) (1) x^ny^{(n)}+p_1x^{n-1}y^{(n-1)}+···+p_{n-1}xy'+p_ny=f(x) \tag{1} xny(n)+p1xn1y(n1)++pn1xy+pny=f(x)(1)
的方程(其中 p 1 , p 2 , ⋅ ⋅ ⋅ , p n p_1,p_2,···,p_n p1,p2,,pn为常数),叫做欧拉方程。

作变换 x = e t x=e^t x=et t = l n x t=lnx t=lnx,将自变量x换成t(如果 x < 0 x<0 x<0,那么作变换为 x = − e t x=-e^t x=et t = l n ( − x ) t=ln(-x) t=ln(x),所得结果与 x > 0 x>0 x>0内的结果相类似。
d y d x = d y d t ⋅ d t d x = 1 x d y d t d 2 y d x 2 = 1 x 2 ( d 2 y d t 2 − d y d t ) d 3 y d x 3 = 1 x 3 ( d 3 y d t 3 − 3 d 2 y d t 2 + 2 d y d t ) \frac{dy}{dx}=\frac{dy}{dt}·\frac{dt}{dx}=\frac{1}{x}\frac{dy}{dt} \\ \frac{d^2y}{dx^2}=\frac{1}{x^2}(\frac{d^2y}{dt^2}-\frac{dy}{dt}) \\ \frac{d^3y}{dx^3}=\frac{1}{x^3}(\frac{d^3y}{dt^3}-3\frac{d^2y}{dt^2}+2\frac{dy}{dt}) dxdy=dtdydxdt=x1dtdydx2d2y=x21(dt2d2ydtdy)dx3d3y=x31(dt3d3y3dt2d2y+2dtdy)
如果采用记号D表示对t求导的运算 d d t \frac{d}{dt} dtd,那么上述计算结果可以写成
x y ′ = D y x 2 y ′ ′ = D ( D − 1 ) y x 3 y ′ ′ ′ = D ( D − 1 ) ( D − 2 ) y xy'=Dy\\ x^2y''=D(D-1)y\\ x^3y'''=D(D-1)(D-2)y xy=Dyx2y=D(D1)yx3y=D(D1)(D2)y
一般地,有
x k y ( k ) = D ( D − 1 ) ⋅ ⋅ ⋅ ( D − k + 1 ) y x^ky^{(k)}=D(D-1)···(D-k+1)y xky(k)=D(D1)(Dk+1)y
把它代入欧拉方程(1),便得一个以t为自变量的常系数线性微分方程。在求出这个方程的解后,把 t t t换成 l n x lnx lnx,即得原方程的解。

:求欧拉方程 x 3 y ′ ′ ′ + x 2 y ′ ′ − 4 x y ′ = 3 x 2 x^3y'''+x^2y''-4xy'=3x^2 x3y+x2y4xy=3x2的通解。

:作变换 x = e t x=e^t x=et t = l n x t=lnx t=lnx,原方程化为
D ( D − 1 ) ( D − 2 ) y + D ( D − 1 ) y − 4 D y = 3 e 2 t D(D-1)(D-2)y+D(D-1)y-4Dy=3e^{2t} D(D1)(D2)y+D(D1)y4Dy=3e2t

D 3 y − 2 D 2 y − 3 D y = 3 e 2 t D^3y-2D^2y-3Dy=3e^{2t} D3y2D2y3Dy=3e2t

d 3 y d t 3 − 2 d 2 y d t 2 − 3 d y d t = 3 e 2 t (2) \frac{d^3y}{dt^3}-2\frac{d^2y}{dt^2}-3\frac{dy}{dt}=3e^{2t} \tag{2} dt3d3y2dt2d2y3dtdy=3e2t(2)
方程(2)所对应的齐次方程为
d 3 y d t 3 − 2 d 2 y d t 2 − 3 d y d t = 0 (3) \frac{d^3y}{dt^3}-2\frac{d^2y}{dt^2}-3\frac{dy}{dt}=0 \tag{3} dt3d3y2dt2d2y3dtdy=0(3)
其特征方程为
r 3 − 2 r 2 − 3 r = 0 r^3-2r^2-3r=0 r32r23r=0
它有三个根: r 1 = 0 , r 2 = − 1 , r 3 = 3 r_1=0,r_2=-1,r_3=3 r1=0,r2=1,r3=3。于是方程(2)的通解为
Y = C 1 + C 2 e − t + C 3 e 3 t = C 1 + C 2 x + C 3 x 3 Y=C_1+C_2e^{-t}+C_3e^{3t}=C_1+\frac{C_2}{x}+C_3x^3 Y=C1+C2et+C3e3t=C1+xC2+C3x3
根据常系数非齐次线性微分方程解法知,特解的形式为
y ∗ = b e 2 t = b x 2 y^*=be^{2t}=bx^2 y=be2t=bx2
代入原方程,求得 b = − 1 2 b=-\frac{1}{2} b=21,即
y ∗ = − x 2 2 y^*=-\frac{x^2}{2} y=2x2
于是,所给欧拉方程的通解为
y = C 1 + C 2 x + C 3 x 3 − 1 2 x 2 y=C_1+\frac{C_2}{x}+C_3x^3-\frac{1}{2}x^2 y=C1+xC2+C3x321x2

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值