本文为🔗365天深度学习训练营 中的学习记录博客
原作者:K同学啊|接辅导、项目定制
我的环境:
1.语言:python3.7
2.编译器:pycharm
3.深度学习环境:TensorFlow2.5
一.前期工作
1.设置GPU
若是使用的是cpu可忽略
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
gpu0 = gpus[0]
tf.config.experimental.set_memory_growth(gpu0, True)
tf.config.set_visible_devices([gpu0],"GPU")
使用cpu训练
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
2.导入数据集
from tensorflow import keras
from tensorflow.keras import layers, models
import os, PIL, pathlib
import matplotlib.pyplot as plt
import tensorflow as tf
import numpy as np
data_dir = "E:/TF环境/48-data/"
data_dir = pathlib.Path(data_dir)
此处利用了pathlib模块,将data_dir中存储的路径传递给pathlib.Path类型的对象。方便我们对文件路径进行操作。
3.查看数据
image_count = len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:",image_count)
glob是文件名匹配库,用它可以查找符合特定规则的文件路径名。glob.glob()函数将会匹配给定路径下的所有pattern,并以列表形式返回。
查找文件只用到三个匹配符:
”*”, 匹配 0 个或多个字符;
“?”, ”?”匹配单个字符;
“[]”:”[]”匹配指定范围内的字符,如:[0-9]匹配数字;
注意:如果文件名以“点”开头 ,无法被 '*' 和 '?'匹配,如:".card.gif"
len() 方法计算列表中元素的数量,这样我们就可以得到该文件夹下的图片总数
roses = list(data_dir.glob('Johnny Depp/*.jpg'))
hd = PIL.Image.open(str(roses[0]))
hd.show()
PIL是Python Imaging Library,它为python解释器提供了图像编辑函数。的Image模块提供了一个具有相同名称的类,用于表示PIL图像。该模块还提供了许多出厂函数,包括从文件加载图像和创建新图像的函数。PIL.Image.open()打开并标识给定的图像文件。
二、数据预处理
1、加载数据
图片格式设置
batch_size = 32
img_height = 224
img_width = 224
训练集、测试集和验证集的关系:
(1) 训练集相当于课后的练习题,用于日常的知识巩固。
(2) 验证集相当于周考,用来纠正和强化学到的知识。
(3) 测试集相当于期末考试,用来最终评估学习效果。
划分训练集:
使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中。(可参考)
batch_size: 数据批次的大小。默认值:32
image_size: 从磁盘读取数据后将其重新调整大小。默认:(256,256)。由于管道处理的图像批次必须具有相同的大小,因此该参数必须提供。
seed: 用于shuffle和转换的可选随机种子。
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.1,
subset="training",
label_mode = "categorical",
seed = 123,
image_size = (img_height, img_width),
batch_size = batch_size
)
划分验证集:
验证集虽然没有直接参与模型的训练过程,但是为我们增加了一个人工调试的环节。我们可以根据每一轮的训练在测试集上的表现来决定是否需要训练进行early stop,还可以根据这个过程来调整模型的超参。
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.1,
subset="validation",
label_mode = "categorical",
seed = 123,
image_size = (img_height, img_width),
batch_size = batch_size
)
查看标签
class_names = train_ds.class_names
print(class_names)
train_ds.class_names 是一个属性,它是通过数据集对象 train_ds 中的类别信息自动生成的一个包含类别名称的列表。
2、可视化数据
plt.figure(figsize = (20, 10))
for images, labels in train_ds.take(1):
for i in range(20):
ax = plt.subplot(5, 10, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[np.argmax(labels[i])])
plt.axis("off")
plt.show()
3、再次检查数据
for image_batch, labels_batch in train_ds:
print(image_batch.shape)
print(labels_batch.shape)
break
image_batch是形状的张量(32,224,224,3).这是一批形状224x224x3的32张图片(最后一维是指彩色通道RGB)。
label_batch是形状(32,)的张量,这些标签对应32张图片
4、配置数据集
AUTOTUNE = tf.data.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
AUTOTUNE 是 TensorFlow 的一个常量。它表示 TensorFlow 数据处理流程中可以自动选择最优化参数(例如 GPU 处理数量等)的范围,在不同的硬件配置下可能会有不同的取值。
train_ds.cache() 和 val_ds.cache() 函数是 Tensorflow 的数据转换函数,它们的作用是将数据集中的元素缓存到内存或者磁盘中,以便后续访问时能够更快地读取数据。使用缓存可以避免由于磁盘 I/O 等因素导致数据读取速度变慢的问题,从而加速训练或评估过程。
train_ds.shuffle(1000) 函数是 Tensorflow 的数据转换函数,它的作用是将输入数据集中的元素随机打乱顺序。
这样做的目的是防止模型过拟合,并促进模型对不同数据的学习能力。其中,1000 表示用于对数据集进行重排的元素数量,其具体取值可以根据数据集大小进行调整。
shuffle():打乱数据。
prefetch():预取数据,加速运算。
cache():将数据集缓存到内存中,加速运行。
三、构建CNN网络
卷积神经网络(CNN)的输入是张量形式的(image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels为(R,G,B)分别对应的RGB的三个颜色通道(color channel)。在此实列中,我们的CNN输入的形状是(224,224,3)即彩色图像。我们需要在声明第一层时将形状赋值给参数input_shape。
model = models.Sequential([
layers.experimental.preprocessing.Rescaling(1. / 255, input_shape=(img_height, img_width, 3)),
layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)),
layers.AveragePooling2D((2, 2)), # 池化层1,2*2采样
layers.Conv2D(32, (3, 3), activation='relu'), # 卷积层2,卷积核3*3
layers.AveragePooling2D((2, 2)), # 池化层2,2*2采样
layers.Dropout(0.5),
layers.Conv2D(64, (3, 3), activation='relu'), # 卷积层3,卷积核3*3
layers.AveragePooling2D((2,2)),
layers.Dropout(0.5),
layers.Conv2D(128,(3,3),activation='relu') #卷积层3,卷积核3*3
layers.Dropout(0.5),
layers.Flatten(), # Flatten层,连接卷积层与全连接层
layers.Dense(128, activation='relu'), # 全连接层,特征进一步提取
layers.Dense(len(class_names)) # 输出层,输出预期结果
])
model.summary() # 打印网络结构
Dropout,它可以通过随机失活神经元,强制网络中的权重只取最小值,使得权重值的分布更加规则,减小样本过拟合问题,起到正则化的作用。
当Dropout应用到某个层中,它会再训练过程中对所应用的层随机丢弃(你所设置的)输出数量单位。当Dropout取一个小数作为他的输入值(如:0.1、0.2、0.3......),代表了从应用的层中随机放弃10%、20%、30%的输出单位。
四、模型训练
optimizer(优化器):决定模型如何根据其看到的数据和自身的损失函数进行更新。
loss(损失函数):用于衡量模型在训练期间的准确率。
metrics(指标):用于监控训练和测试步骤。一上实例使用了准确率,即被正确分类的图像的比率。
1、设置动态学习率
学习率是深度学习模型训练中一个非常重要的超参数,它决定了每次迭代参数更新的步长大小。学习率的设置对模型的训练效果和收敛速度有很大的影响。找到一个好的学习率非常重要,如果设置的太高,可能会发散;设置的太低,训练会收敛到最终解,但需要花费很长的时间。
# 设置初始学习率
initial_learning_rate = 1e - 4
Ir_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate,
decay_steps=60, #这里指的是steps,不是指epochs
decay_rate=0.96, #Ir经过一次衰减就会变为decay_rate*Ir
staircase=True)
# 将指数衰减学习率送入优化器
opt = tf.keras.optimizers.Adam(learning_rate=1e-4)
model.compile(
optimizer=opt,
loss=tf.keras.losses.CategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
学习率大小优缺点分析:
学习率大
优点:
- 加快学习速率。
- 有助于跳出局部最优值。
缺点:
- 导致模型训练不收敛。
- 单单使用大学习率容易导致模型不精确。
学习率小
优点:
- 有助于模型收敛、模型细化。
- 提高模型精度。
缺点:
- 很难跳出局部最优值。
- 收敛缓慢。
注意:这里设置的动态学习率为:指数衰减型(ExponentialDecay)。在每一个epoch开始之前,学习率(learning_rate)都会重置为初始学习率(initial_learning_rate),然后再重新开始衰减。计算公式如下:
learning_rate = initial_learning_rate*decay_rate**(step/decay_steps)
损失函数Loss详解:
1.binary_crossentropy(对数损失函数)
与sigmoid相应的损失函数,针对二分类问题
2.categorical_crossentropy(多分类的对数损失函数)
与softmax相应的损失函数,如果使用one-hot编码,则使用categorical_crossentropy
调用方法一:
model.compile(
optimizer="adam",
loss='Categorical_Crossentropy',
metrics=['accuracy'])
调用方法二:
model.compile(
optimizer="adam",
loss=tf.keras.losses.CategoricalCrossentropy(),
metrics=['accuracy'])
3.sparse_categorical_crossentropy(稀疏性多分类的对数损失函数)
与softmax相对应的损失函数,如果是整数编码,则使用sparse_categorical_crossentropy
调用方法一:
model.compile(
optimizer="adam",
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
调用方法二:
model.compile(
optimizer="adam",
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=['accuracy'])
函数原型
tf.keras.losses.SparseCategoricalCrossentropy(
from_logits = False,
reduction = losses_utils.ReductionV2.AUTO,
name = 'sparse_categorical_crossentropy'
)
参数说明:
- from_logits: 为True时,会将y_pred转化为概率(用softmax),否则不进行转换,通常情况下用True结果更稳定;
- reduction: 类型为tf.keras.losses.Reduction,对loss处理,默认是AUTO;
2、早停与保存最佳模型参数
monitor:被监测的数据。
min_delta:在被监测的数据中被认为是提升的最小变化,例如,小于min_delta的绝对变化会被认为没有提升。
patience:没有进步的训练轮数,在这之后训练就会被停止。
verbose:详细信息模式。
mode : fauto, min, max}其中之一。在min模式中,当被监测的数据停止下降,训练就会停止;在max模式中,当被监测的数据停止上升,训练就会停止;在auto模式中,方向会自动从被监测的数据的名字中判断出来。
baseline:要监控的数量的基准值。如果模型没有显示基准的改善,训练将停止。
estore_best_weights :是否从具有监测数量的最佳值的时期恢复模型权重。如果为False,则使用在训练的最后—步获得的模型权重。
from tensorflow.keras.callbacks import ModelCheckpoint,EarlyStopping
epochs = 100
#保存最佳模型参数
checkpointer = ModelCheckpoint(
'best_model.h5',
monitor='val_accuracy',
verbose=1,
save_best_only=True,
save_weights_only=True
)
#设置早停
earlystopper = EarlyStopping(monitor = 'val_accuracy',
min_delta = 0.001,
patience = 20,
verbose = 1
)
3、模型训练
history = model.fit(
train_ds,
validation_data = val_ds,
epochs = epochs,
callbacks = [checkpointer]
)
五、模型评估
1、Loss与Accuracy图
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs_range = range(len(loss))
plt.figure(figsize=(12,4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label = "Training Acc")
plt.plot(epochs_range, val_acc, label = "Validation Acc")
plt.legend(loc = 'lower right')
plt.title("Training And Validation Acc")
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label = "Training Loss")
plt.plot(epochs_range, val_loss, label = "Validation Loss")
plt.legend(loc = 'upper right')
plt.title("Training And Validation Loss")
plt.show()
2、指定图片预测
# 加载效果最好的模型权重
model.load_weights('best_model.h5')
from PIL import Image
import numpy as np
img = Image.open("./48-data/Jennifer Lawrence/003_963a3627.jpg") #这里选择你需要预测的图片
image = tf.image.resize(img, [img_height, img_width])
img_array = tf.expand_dims(image, 0)
predictions = model.predict(img_array) # 这里选用你已经训练好的模型
print("预测结果为:",class_names[np.argmax(predictions)])