Matrix decomposition

In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.

1 Example

In numerical analysis, different decompositions are used to implement efficient matrix algorithms.

For instance, when solving a system of linear equations A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } Ax=b , the matrix A A A can be decomposed via the LU decomposition. The LU decomposition factorizes a matrix into a lower triangular matrix L L L and an upper triangular matrix U U U. The systems L ( U x ) = b {\displaystyle L(U\mathbf {x} )=\mathbf {b} } L(Ux)=b and U x = L − 1 b {\displaystyle U\mathbf {x} =L^{-1}\mathbf {b} } Ux=L1b require fewer additions and multiplications to solve, compared with the original system A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } Ax=b , though one might require significantly more digits in inexact arithmetic such as floating point.

Similarly, the QR decomposition expresses A A A as Q R QR QR with Q Q Q an orthogonal matrix and R R R an upper triangular matrix. The system Q ( R x ) = b Q(Rx) = b Q(Rx)=b is solved by R x = Q T b = c Rx = Q^Tb = c Rx=QTb=c, and the system R x = c Rx = c Rx=c is solved by ‘back substitution’. The number of additions and multiplications required is about twice that of using the L U LU LU solver, but no more digits are required in inexact arithmetic because the Q R QR QR decomposition is numerically stable.

2 Decompositions related to solving systems of linear equations

2.1 LU decomposition

2.2 LU reduction

2.3 Block LU decomposition

2.4 Rank factorization

2.5 Cholesky decomposition

2.6 QR decomposition

2.7 RRQR factorization

2.8 Interpolative decomposition

3 Decompositions based on eigenvalues and related concepts

3.1 Eigendecomposition

3.2 Jordan decomposition

3.3 Schur decomposition

3.4 Real Schur decomposition

3.5 QZ decomposition

3.6 Takagi’s factorization

3.7 Singular value decomposition

3.8 Scale-invariant decompositions

4 Other decompositions

4.1 Polar decomposition

4.2 Algebraic polar decomposition

4.3 Mostow’s decomposition

4.4 Sinkhorn normal form

4.5 Sectoral decomposition

4.6 Williamson’s normal form

4.7 Matrix square root

5 Generalizations

6 See also

7 References

7.1 Notes

7.2 Citations

7.3 Bibliography

8 External links

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值