In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.
Contents
1 Example
In numerical analysis, different decompositions are used to implement efficient matrix algorithms.
For instance, when solving a system of linear equations A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } Ax=b , the matrix A A A can be decomposed via the LU decomposition. The LU decomposition factorizes a matrix into a lower triangular matrix L L L and an upper triangular matrix U U U. The systems L ( U x ) = b {\displaystyle L(U\mathbf {x} )=\mathbf {b} } L(Ux)=b and U x = L − 1 b {\displaystyle U\mathbf {x} =L^{-1}\mathbf {b} } Ux=L−1b require fewer additions and multiplications to solve, compared with the original system A x = b {\displaystyle A\mathbf {x} =\mathbf {b} } Ax=b , though one might require significantly more digits in inexact arithmetic such as floating point.
Similarly, the QR decomposition expresses A A A as Q R QR QR with Q Q Q an orthogonal matrix and R R R an upper triangular matrix. The system Q ( R x ) = b Q(Rx) = b Q(Rx)=b is solved by R x = Q T b = c Rx = Q^Tb = c Rx=QTb=c, and the system R x = c Rx = c Rx=c is solved by ‘back substitution’. The number of additions and multiplications required is about twice that of using the L U LU LU solver, but no more digits are required in inexact arithmetic because the Q R QR QR decomposition is numerically stable.