Difference quotient

差商是单变量微积分中的一个关键概念,它衡量了函数在某区间内的平均变化率。当h趋近于0时,差商的极限给出了函数的导数,即瞬时变化率。此外,对于一个区间[a, b]上的函数,差商可以表示该区间内导数的平均值,并与切线斜率和中值定理相关联。在数值微分中,差商被用来近似导数,但也存在批评意见。差商有时也被称为牛顿商或费马的差商。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In single-variable calculus, the difference quotient is usually the name for the expression

{\displaystyle {\frac {f(x+h)-f(x)}{h}}}{\frac {f(x+h)-f(x)}{h}}
which when taken to the limit as h approaches 0 gives the derivative of the function f.[1][2][3][4] The name of the expression stems from the fact that it is the quotient of the difference of values of the function by the difference of the corresponding values of its argument (the latter is (x + h) - x = h in this case).[5][6] The difference quotient is a measure of the average rate of change of the function over an interval (in this case, an interval of length h).[7][8]: 237 [9] The limit of the difference quotient (i.e., the derivative) is thus the instantaneous rate of change.[9]

By a slight change in notation (and viewpoint), for an interval [a, b], the difference quotient

{\displaystyle {\frac {f(b)-f(a)}{b-a}}}{\frac {f(b)-f(a)}{b-a}}
is called[5] the mean (or average) value of the derivative of f over the interval [a, b]. This name is justified by the mean value theorem, which states that for a differentiable function f, its derivative f′ reaches its mean value at some point in the interval.[5] Geometrically, this difference quotient measures the slope of the secant line passing through the points with coordinates (a, f(a)) and (b, f(b)).[10]

Difference quotients are used as approximations in numerical differentiation,[8] but they have also been subject of criticism in this application.[11]

Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h.

The difference quotient is sometimes also called the Newton quotient[10][12][13][14] (after Isaac Newton) or Fermat’s difference quotient (after Pierre de Fermat).[15]

1 Overview

2 Defining the point range

3 The primary difference quotient (Ń = 1)

3.1 As a derivative

3.2 As a divided difference

4 Higher-order difference quotients

4.1 Second order

4.2 Third order

4.3 Nth order

5 Applying the divided difference

6 See also

创建一个简单的JavaScript计算器,用于执行加法(SUM)、乘法(PRODUCT)、减法(DIFFERENCE)和除法(QUOTIENT)操作,你可以使用以下代码: ```javascript // 创建一个对象表示计算器 const Calculator = { // 初始化数值变量 num1: 0, num2: 0, // 设置初始数字 setNumber: function(number) { if (number !== '') { this.num1 = parseFloat(number); } }, // 加法运算 add: function() { if (this.num2) { this.num1 += this.num2; this.num2 = 0; // 清空第二个数,准备下一次运算 return this.num1; } else { console.log('请输入第二个数'); } }, // 乘法运算 multiply: function() { if (this.num2) { this.num1 *= this.num2; this.num2 = 0; return this.num1; } else { console.log('请输入第二个数'); } }, // 减法运算 subtract: function() { if (this.num2) { this.num1 -= this.num2; this.num2 = 0; return this.num1; } else { console.log('请输入第二个数'); } }, // 除法运算 divide: function() { if (this.num2 && this.num2 !== 0) { this.num1 /= this.num2; this.num2 = 0; return this.num1; } else { console.log('除数不能为零,请重新输入'); } }, }; // 测试计算器功能 Calculator.setNumber(prompt('请输入第一个数字: ')); alert(`选择了操作: ` + prompt('请选择操作(+ - * /): ')); // 假设用户手动选择操作 switch(prompt('请输入要进行的操作:')) { case '+': alert(Calculator.add()); break; case '-': alert(Calculator.subtract()); break; case '*': alert(Calculator.multiply()); break; case '/': alert(Calculator.divide()); break; default: console.log('无效的操作'); } ``` 这段代码创建了一个名为`Calculator`的对象,提供了四个方法(加、乘、减、除)来执行数学运算。用户首先输入第一个数字,然后根据提示选择一个操作,再次输入第二个数字(除法操作时第二个数不能为零),最后显示计算结果。 请注意,这只是一个基本的交互式计算器例子,在实际应用中可能需要改进用户体验,例如使用DOM元素构建真正的UI界面。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值