以下内容针对使用yolov7+deepsort对船舶进行检测及跟踪过程中出现的ID不连续及频繁跳变问题
船舶ID不连续和ID跳变的问题在实际的多目标跟踪任务中是常见的,这主要是由于目标检测的不稳定、遮挡和相互重叠等因素导致的。以下是一些可以尝试的策略以改善跟踪的稳定性:
一、加强目标检测:
首先,你需要确保使用的YOLOv7模型已经被充分地训练并且能够在你的数据集上进行可靠的目标检测。如果检测结果不稳定,可能会导致ID切换的问题。可以尝试调整YOLOv7的阈值,减少误检测和漏检测。
YOLOv7对目标检测的阈值可以通过阈值参数进行调整。调整的基本原理是,阈值越高,模型认为是目标的置信度就要越高,这样可以减少误检,但可能会增加漏检。相反,阈值越低,模型对目标的检测就会越敏感,可能增加误检,但会减少漏检。
-
调整YOLOv7的阈值,我们需要找到使用YOLOv7模型进行目标检测的代码部分,通常为预测函数或者是用于调用预测函数的脚本。例如,
detector.detectObjectsFromImage()
。 -
阈值参数通常称为
confidence_threshold
、conf_thres
或可能是prob_threshold
等。
例如,
detector.detectObjectsFromImage(input_image="input.jpg", output_image_path="output.jpg", minimum_percentage_probability=