1.点云读入:
将文件拖拽至软件主界面处,或在菜单的open处打开点云文件
|
|
Global shift界面 | 点云读入后显示界面 |
2.高程赋色:
方法一:
点击上方工具栏Edit >> Scalar fields >> Export coordinates to SF,选择按Z值渲染
|
|
工具栏界面 | 渲染赋色后结果 |
方法二:
点击Edit >> Colors >> Height Ramp,里面有两个渲染方式,一个是Custom,一个是Banding,先用Banding方式,通过选择按照z值的最小单位来渲染,此处选择20米;后用Custom方式,通过选择第一渲染颜色和第二渲染颜色的方式来进行渲染,此处选择红色和橙色
|
|
Banding方式界面 | 赋色渲染后界面 |
|
|
Custom方式 | 赋色渲染后界面 |
3. 地面滤波
方法一:CSF地面滤波法
流程概述:
1) 利用点云Q 滤波算法或者点云处理软件滤除异常点
2) 将激光雷达点云倒置
3) 设置模拟布料,设置布料网格分辨率
具体软件操作:
点击Plugins中的CSF Filter功能,此处general parameter setting选择flat平地,advanced parameter setting中的布料格网分辨率设置为2,最大迭代次数设置为500,地面点与非地面点距离阈值设置为0.5;
(Cloth resolution:是指用于覆盖地形的布的网格大小(单位与点云的单位相同),布分辨率越大,DTM越粗糙;
Max iterations:是指地形仿真的最大迭代次数;
Classification threshold:是指根据点与模拟地形之间的距离,将点云划分为地面和非地面部分的阈值)
|
|
general parameter setting窗口 | advanced parameter setting窗口 |
| |
CSF地面滤波后结果 |
方法二:坡度法地面滤波
点击上方工具栏Edit >> Scalar fields >>Gradient计算标量域的梯度/坡度/倾斜度,对话框“Gradient字段是要用(欧几里德)距离进行计算吗?”选择是(标量域是点云实体的高程),在color scale界面勾选visible,根据右侧的坡度值分布色谱图,设置阈值;
点击上方工具栏Edit >> Scalar fields >>Filter By Value,坡度阈值设置为0.12,点击Split即可完成地面点与非地面点的分割。
|
|
Color scale界面 | 点云中每个点的坡度分布 |
|
|
Filter by value界面 | 滤波后结果 |
两种方法结果对比
|
|
CSF -Ground points | CSF -Off-ground points |
|
|
坡度法-Ground points | 坡度法- Off-ground points |
4.nDSM
方法1:基于CSF滤波算法
先基于对CSF滤波结果(选择export to mesh)对地面网格执行平滑,点击Edit >> Mesh >>Smooth(Laplacian);
选择原始点云和生成的地面网格,点击Tools >> Distances >>Cloud/Mesh Dist,计算点云到网格的距离,Edit >> Scalar fields >>Set SF as Coordinate(s),将计算得到的距离赋值给Z轴
|
|
Distance computation窗口 | 计算结果 |
|
|
Set SF as Coordinate(s)窗口 | 归一化结果 |
方法2:泊松+栅格(需要已知地面点云)
(1)计算粗DEM:选择地面点云, 插值计算分辨率为2米的DEM,打开Rasterize窗口,按下图所示参数输入,得到的DEM会存在错误值, 使用裁剪工具将其切除;
(2)计算法向量:Edit>>normal>>compute,Neighbors选择auto;
(3)执行泊松重建:选择右侧工具箱中的 ,选择默认参数
|
|
Rasterize窗口 | Compute normal窗口 |
| |
粗DEM计算结果 | |
| |
裁剪后结果 | |
|
|
计算法向量 | 泊松重建窗口 |
| |
泊松重建结果 |
(4)粗DEM接边:裁剪泊松重建的结果,将泊松重建结果的边缘裁出来,然后点击上方工具栏中的 将边缘转换成点云,然后按住Ctrl双选地面点云和切出来的边界, 点击上方工具栏中的
对其进行合并;
| |
裁剪操作 | |
|
|
裁剪结果 | 转为点云窗口 |
| |
合并结果 |
(5)点击上方窗口的 基于加了边界的地面类计算分辨率为0.5米的DEM, 并且进行插值, 输出为Mesh格式;
(6)执行拉普拉斯平滑:点击Edit >> Mesh >>Smooth(Laplacian)
|
|
Rasterize窗口 | 拉普拉斯平滑后结果 |
(7)计算归一化高程:选择原始点云和平滑后的DEM,点击Tools >> Distances >>Cloud/Mesh Dist,计算它们之间的距离;
记录原始高度,选择原始点云, 将原始Z值储存为特征;
|
|
两种方法结果对比
| |
基于CSF | 泊松+栅格 |
优点:操作简单、有理论支撑 | 优点:适用于崎岖地形,拟合效果好 |
缺点:CSF算法不适用于崎岖地形 | 缺点:需要首先计算/分类地面点云,如果DSM栅格不够小, 归一化后可能会出现栅格纹理 |
5.栅格化:
使用“Tools > Projection > Rasterize”工具,点云“栅格化”(即将点云转换成2.5D网格),然后把它导出为新的点云图或光栅图像等,栅格化结果如下
| |