【概率预测】对风力发电进行短期概率预测的分析研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

风能作为一种清洁、可再生的能源,在全球能源结构转型中扮演着越来越重要的角色。然而,风力发电的固有波动性和不确定性对电力系统的稳定运行和调度带来了挑战。为了应对这些挑战,短期风电预测,尤其是概率预测,成为了电力系统运行优化、交易和风险管理的关键技术。本文旨在对风力发电的短期概率预测进行深入的分析研究,探讨其重要性、现有方法、面临的挑战以及未来的发展方向。我们将首先阐述短期风电预测的意义和概率预测相对于点预测的优势,然后回顾当前主流的概率预测方法,并对不同方法的优缺点进行比较分析。接着,我们将探讨影响预测精度的关键因素和当前研究面临的主要挑战,并提出未来的潜在研究方向。

引言

随着全球对环境保护和可持续发展的日益关注,风力发电装机容量在全球范围内持续增长。然而,风速的高度随机性和间歇性导致风电出力具有显著的波动性,这对电网的稳定运行、电能质量和可靠性提出了新的要求。传统的电力系统调度主要依赖于确定性的负荷和发电预测,但风电的随机性使得确定性预测难以准确反映风电出力的变化范围和不确定性程度。在这种背景下,风力发电的短期预测应运而生,旨在为电力系统的调度和控制提供提前的信息。

短期风电预测通常指对未来几分钟到几小时的风电出力进行预测。早期的短期风电预测主要采用点预测(Point Prediction)方法,即预测未来时刻的风电出力的单一数值。然而,点预测无法提供关于预测不确定性的信息,这使得电力系统调度人员难以评估潜在的风险。为了克服点预测的局限性,概率预测(Probabilistic Prediction)方法被提出,其目标是预测未来风电出力可能的取值范围及其概率分布,例如预测区间(Prediction Interval, PI)或概率密度函数(Probability Density Function, PDF)。概率预测能够量化预测的不确定性,为电力系统制定更灵活、更鲁棒的调度策略提供了基础,例如备用容量的优化配置、电网阻塞管理的风险评估以及现货市场的交易决策等。因此,对风力发电进行短期概率预测的研究具有重要的理论意义和实际应用价值。

短期风电概率预测的重要性与优势

短期风电概率预测相对于点预测,具有以下显著的重要性与优势:

  1. 量化预测不确定性:

     概率预测能够提供未来风电出力可能波动范围的信息,通过预测区间或概率分布函数来表示。这使得电力系统调度人员能够清晰地了解预测的不确定性程度,从而更好地评估潜在风险并制定相应的对策。例如,在风电出力预测值较低且预测区间较宽的情况下,调度部门可以预留更多的备用容量以应对可能的出力不足。

  2. 优化电力系统调度:

     基于概率预测信息,电力系统调度部门可以进行更精细化的调度优化。例如,在制定机组组合计划时,可以考虑风电出力的不确定性,从而降低因风电预测误差导致的系统不稳定风险。在现货市场交易中,概率预测可以帮助电力市场参与者评估风电出力的潜在波动,制定更合理的报价策略。

  3. 提高备用容量配置效率:

     备用容量是应对电力系统预测误差和随机扰动的重要手段。传统的备用容量配置主要基于点预测的最大可能误差进行估算,往往存在过度配置或配置不足的问题。基于风电概率预测,可以根据预测区间或概率分布来计算所需的备用容量,从而提高备用容量配置的效率,降低运行成本。

  4. 风险管理与评估:

     概率预测提供了关于风电出力分布的信息,使得电力系统可以对潜在的风险进行更准确的评估和管理。例如,可以利用预测区间来评估风电出力低于或高于某个阈值的概率,从而提前采取措施规避风险。

  5. 促进电力市场交易:

     在电力现货市场中,风电出力预测的准确性和不确定性信息对交易决策至关重要。概率预测为风电场业主和交易商提供了更全面的信息,帮助他们更好地评估市场风险和收益,制定更具竞争力的交易策略。

综上所述,短期风电概率预测不仅是对风电出力进行简单估计,更重要的是提供了关于未来风电出力不确定性的关键信息,这对于提高电力系统的运行效率、安全性和经济性具有不可替代的作用。

短期风电概率预测的主流方法

目前,短期风电概率预测方法主要可以分为以下几类:

  1. 统计学方法 (Statistical Methods):

    • 分位数回归 (Quantile Regression, QR):

       分位数回归是一种直接预测条件分位数的方法。通过预测不同分位数下的风电出力值,可以构建预测区间。与传统的最小二乘回归不同,分位数回归不受误差分布的假设限制,对异常值具有较好的鲁棒性。

    • 高斯过程回归 (Gaussian Process Regression, GPR):

       高斯过程是一种强大的非参数概率模型,可以用于回归和分类任务。在高斯过程回归中,将输出变量视为一个高斯过程,可以同时预测均值和方差,从而得到预测的概率分布。

    • 非参数概率预测 (Non-parametric Probabilistic Forecasting):

       这类方法不假设风电出力或预测误差的分布形式,而是通过历史数据来估计概率分布。常见的非参数方法包括核密度估计 (Kernel Density Estimation, KDE) 和分位数经验分布函数 (Empirical Distribution Function of Quantiles)。

  2. 机器学习方法 (Machine Learning Methods):

    • 神经网络 (Neural Networks, NN):

       神经网络,特别是循环神经网络 (Recurrent Neural Networks, RNN) 和长短期记忆网络 (Long Short-Term Memory, LSTM),在处理时间序列数据方面具有优势。通过训练神经网络预测风电出力的条件概率分布,可以实现概率预测。例如,可以通过预测不同分位数下的风电出力值,或者直接输出概率分布的参数。

    • 支持向量机 (Support Vector Machine, SVM):

       支持向量机可以用于回归任务,通过对输出进行区间预测,也可以实现概率预测。

    • 集成学习方法 (Ensemble Learning Methods):

       集成学习方法通过结合多个基模型的预测结果来提高预测性能和鲁棒性。例如,可以训练多个点预测模型,然后结合它们的预测结果和预测误差来构建预测区间。常见的集成方法包括Bagging、Boosting和Stacking等。

    • 贝叶斯机器学习方法 (Bayesian Machine Learning Methods):

       将贝叶斯推断的思想应用于机器学习模型,可以量化模型参数的不确定性,从而得到预测的概率分布。例如,贝叶斯神经网络 (Bayesian Neural Networks, BNN) 可以输出预测的均值和方差。

  3. 混合方法 (Hybrid Methods):

    • 混合方法结合了不同方法的优点,以提高预测精度和鲁棒性。例如,可以将时间序列分析方法与机器学习方法相结合,或者将确定性预测方法与概率预测方法相结合。常见的混合方法包括将经验模态分解 (Empirical Mode Decomposition, EMD) 或小波分解 (Wavelet Decomposition) 用于对风速或风电出力进行分解,然后对分解后的分量分别进行预测,最后重构得到概率预测结果。

在实际应用中,选择合适的概率预测方法取决于多种因素,包括数据的特点、预测的时间尺度、计算资源以及所需的预测精度等。例如,对于短期预测,基于深度学习的方法在捕捉复杂的非线性关系和时间依赖性方面表现出色;而对于具有明确统计特性的数据,统计学方法可能更具解释性和计算效率。

影响风电短期概率预测精度的关键因素

短期风电概率预测的精度受到多种因素的影响,主要包括:

  1. 输入数据的质量和丰富度:

    • 气象数据:

       风速、风向、温度、气压等气象数据是风电预测的关键输入。气象数据的质量(准确性、完整性、分辨率)直接影响预测精度。数值天气预报 (Numerical Weather Prediction, NWP) 模型的精度是重要的影响因素。

    • 历史风电出力数据:

       历史风电出力数据反映了风电场的发电特性。数据的长度、时间分辨率和清洗程度都会影响模型的训练和预测效果。

    • 地形和地貌信息:

       风电场周围的地形和地貌会影响风资源的分布和湍流特性,对预测精度有重要影响。

    • 电网状态信息:

       电网的运行状态(例如,故障、维护)也可能间接影响风电场的出力,但这种影响通常更复杂且难以纳入预测模型。

  2. 预测模型的选择和参数设置:

    • 模型的复杂度和适用性:

       选择合适的预测模型是关键。对于复杂的非线性关系,深度学习模型可能表现更好,但也可能存在过拟合的风险。对于相对简单的数据,统计学模型可能更易于解释和训练。

    • 模型参数的优化:

       模型的参数设置对预测性能至关重要。合适的参数优化方法能够显著提升预测精度。

  3. 预测的时间尺度和提前时间:

    • 预测时间尺度:

       短期预测通常指几分钟到几小时的预测。预测时间尺度越短,预测精度通常越高。

    • 提前时间:

       提前时间越长,预测的不确定性通常越大,预测精度越低。

  4. 风电场的特性:

    • 风电机组类型和数量:

       不同类型的风电机组具有不同的发电特性。风电场的规模(机组数量)也会影响整体出力的波动性。

    • 风电场的地理位置和气候条件:

       不同地区的风资源特性差异很大,这也会影响预测的难度。例如,复杂地形下的风电场预测通常更具挑战性。

  5. 外部因素:

    • 电网调度策略:

       电网调度对风电场的限制(例如,限电)会影响实际出力,这使得预测与实际情况产生偏差。

    • 故障和维护:

       风电机组的故障或维护会影响其出力,这需要及时纳入预测模型中。

短期风电概率预测面临的挑战

尽管短期风电概率预测技术取得了显著进展,但仍然面临一些挑战:

  1. 预测误差的准确量化:

     虽然概率预测旨在量化不确定性,但如何准确地评估和验证概率预测的质量仍然是一个挑战。仅仅关注预测区间覆盖率是不够的,还需要考虑预测区间的宽度、锐度和可靠性等指标。

  2. 极端风电出力的预测:

     极端风电出力(例如,突然的出力骤降或骤升)对电力系统的安全稳定运行带来严重威胁。准确预测这些极端事件的概率和发生时间仍然是一个困难的问题。

  3. 数据稀疏性和噪声:

     实际运行中的风电场数据可能存在缺失、异常值或噪声,这些问题会影响模型的训练和预测精度。如何有效地处理和清洗这些数据是一个挑战。

  4. 模型的可解释性和可信度:

     许多先进的机器学习模型,特别是深度学习模型,是“黑箱”模型,其内部工作机制难以理解。这使得预测结果的可解释性和可信度受到一定限制,尤其是在电力系统这种对安全性要求极高的领域。

  5. 计算资源的限制:

     训练复杂的概率预测模型,特别是基于深度学习的模型,需要大量的计算资源和时间。在实时调度场景下,预测的实时性要求较高,这可能对计算资源提出挑战。

  6. 不同风电场之间的泛化能力:

     一个在特定风电场训练的预测模型可能难以直接应用于其他风电场,因为不同风电场的特性和风资源条件存在差异。如何提高模型的泛化能力是一个重要的研究方向。

  7. 联合概率预测:

     电力系统通常包含多个风电场,它们之间的出力存在一定的相关性。如何进行联合概率预测,考虑不同风电场之间的相关性,以更准确地评估整个系统的风电出力不确定性,是一个复杂的挑战。

未来的发展方向

为了克服当前面临的挑战并进一步提升短期风电概率预测的性能,未来的研究可以从以下几个方向展开:

  1. 融合多源异构数据:

     进一步整合和利用更多类型的数据,例如卫星遥感数据、雷达数据、电网运行数据等,以提高预测的精度和鲁棒性。

  2. 发展更先进的概率预测模型:

     探索和应用更先进的统计学和机器学习模型,例如,基于生成对抗网络 (Generative Adversarial Networks, GAN) 的概率预测、基于注意机制 (Attention Mechanism) 的深度学习模型,以及更具可解释性的贝叶斯非参数模型等。

  3. 提高极端事件的预测能力:

     专门研究和开发针对极端风电出力事件的概率预测方法,例如,利用异常检测技术和罕见事件建模方法。

  4. 提升模型的可解释性和可信度:

     探索和应用可解释性AI (Explainable AI, XAI) 技术,提高机器学习模型的可解释性,增强模型的透明度和可信度,使其更容易被电力系统运行人员接受和应用。

  5. 研究联合概率预测方法:

     深入研究不同风电场之间的相关性,发展多变量概率预测方法,为整个电力系统的调度提供更全面的不确定性信息。

  6. 利用迁移学习和领域自适应技术:

     研究如何利用迁移学习 (Transfer Learning) 和领域自适应 (Domain Adaptation) 技术,将一个风电场训练的模型快速有效地应用于其他风电场,提高模型的泛化能力。

  7. 加强预测与电力系统调度的协同:

     进一步研究如何将短期风电概率预测信息更有效地融入电力系统的优化调度和风险管理决策中,实现预测与调度的紧密协同。

  8. 开发更有效的概率预测评估指标和方法:

     进一步研究和完善概率预测的评估指标和方法,以便更全面地评估不同预测方法的性能,并为模型的选择和优化提供指导。

  9. 利用高性能计算和边缘计算:

     探索利用高性能计算资源和边缘计算技术,满足实时预测的需求,提高预测的效率。

结论

短期风力发电概率预测是应对风电并网挑战的关键技术,其重要性日益凸显。本文对风电短期概率预测的意义、现有方法、面临的挑战和未来发展方向进行了全面的分析研究。尽管已经取得显著进展,但仍有许多挑战需要克服,例如如何准确量化预测不确定性、如何预测极端事件以及如何提高模型的可解释性和泛化能力等。未来的研究应聚焦于融合多源数据、开发更先进的预测模型、提升预测的实时性和可信度,并加强预测与电力系统调度的协同。通过持续的研究和技术创新,短期风电概率预测的精度和鲁棒性将得到进一步提升,为构建更加智能、灵活和可靠的电力系统做出贡献。

⛳️ 运行结果

🔗 参考文献

[1] 金鑫.风力发电机组系统建模与仿真研究[D].重庆大学,2007.DOI:10.7666/d.y1195170.

[2] 朱博.基于发电功率与短期负荷预测的微网经济运行策略研究[D].重庆大学,2012.DOI:10.7666/d.y2153128.

[3] 方建博,张程,刘春平,等.基于深度学习的风电场短期风速预测研究[C]//吉林省电机工程学会2022年学术年会.国网延边供电公司, 2022.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值