【经环形孔径衍射的径向偏振光束的非近轴传播】基于矢量瑞利衍射积分,推导了径向偏振拉盖尔-高斯光束在环形孔径衍射后的电磁场解析表达式附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

衍射是波动光学中一个至关重要的现象,它描述了波在传播过程中遇到障碍物或孔径时发生偏离直线传播的现象。传统的光学仿真方法,例如基于惠更斯原理或夫琅禾费/菲涅尔衍射积分的算法,在处理复杂光学系统或大数值孔径(NA)情况时往往面临计算效率低下或精度不足的挑战。近年来,基于矢量射线的衍射积分(Vector Ray-Based Diffraction Integral,VRBDI)方法作为一种新兴的衍射仿真技术,因其能够有效地结合几何光学和波动光学的优势,为复杂光学系统的衍射分析提供了新的途径。本文旨在深入探讨VRBDI方法的理论基础、实现原理、关键优势以及相关的仿真工具,并展望其未来的发展方向。

引言

光学仿真在光学系统设计、分析和优化中扮演着不可或缺的角色。随着光学系统向着小型化、高集成度和复杂化发展,对光学仿真工具的精度和效率提出了更高的要求。传统的衍射积分方法,如瑞利-索莫菲衍射积分,虽然理论上能够描述衍射现象,但在实际应用中,尤其对于具有复杂面形、大数值孔径或者存在多种介质界面的光学系统,直接求解衍射积分往往涉及复杂的数值计算,计算量巨大且效率低下。此外,对于偏振效应、色散效应等矢量性质的考虑也给传统方法带来了额外的复杂性。

基于矢量射线的衍射积分(VRBDI)方法,顾名思义,巧妙地将几何光学的射线追迹思想与波动光学的衍射积分理论相结合。其核心思想是通过追踪矢量射线在光学系统中的传播路径和相位变化,并利用衍射积分将这些射线贡献叠加起来,从而计算出任意观察面上的光场分布。这种方法不仅能够有效地处理复杂光学结构,还能够自然地包含偏振效应和色散效应,具有较高的灵活性和通用性。

VRBDI的理论基础

VRBDI方法的理论基础可以追溯到波传播的积分表示以及射线追迹理论。其核心思想是利用物面上离散化的点源发出的球面波或平面波,通过追迹这些波通过光学系统的传播路径,最终在像面或观察面上叠加得到总的光场。然而,VRBDI更进一步,它将光场的贡献视为沿矢量射线传播的能量流和相位信息。

  1. 惠更斯-菲涅尔原理与衍射积分: 惠更斯-菲涅尔原理认为波前上的每一个点都可以看作是一个新的次波源,这些次波源发出的次波的叠加形成了新的波前。基于此原理,可以推导出不同形式的衍射积分,如瑞利-索莫菲积分、夫琅禾费衍射积分和菲涅尔衍射积分。这些积分描述了光场从一个表面传播到另一个表面的过程。VRBDI方法利用这些衍射积分作为计算单元,但其输入不是理想的波前,而是由矢量射线携带的信息。

  2. 矢量射线追迹: 几何光学中的射线追迹描述了光线在介质中沿折射定律和反射定律传播的路径。矢量射线追迹则更进一步,它不仅追踪光线的路径,还追踪光线的偏振状态(琼斯矢量或斯托克斯矢量)以及在传播过程中积累的相位和振幅衰减。VRBDI利用矢量射线追迹来确定从物面上的离散点发出的光线通过光学系统后在像面或观察面上的位置、方向、振幅、相位和偏振状态。

  3. 衍射积分的重构: VRBDI的关键在于如何将离散的矢量射线信息转化为连续的光场分布。一种常见的做法是将每条矢量射线视为携带一定能量和相位的“光子”或“波束”,然后在观察面上将这些“光子”的贡献通过衍射积分进行叠加。例如,可以将每条射线看作是一个局部平面波或者局部球面波,利用其在观察面上的位置、方向、振幅和相位信息,结合相应的衍射核(如夫琅禾费或菲涅尔核),计算其在该点的贡献。最终,将所有射线的贡献相加,即可得到观察面上的总光场分布。

VRBDI的实现原理

VRBDI方法的实现通常包括以下几个关键步骤:

  1. 光源建模与离散化: 首先需要对光源进行建模,可以是点光源、线光源、面光源或者更复杂的空间光场。对于非点光源,需要对其进行离散化,将其分解为一系列离散的子光源点。每个子光源点将作为后续射线追迹的起点。

  2. 矢量射线追迹: 从每个子光源点出发,发射大量的矢量射线。这些射线按照几何光学定律(折射、反射)在光学系统中传播,并记录每条射线的传播路径、方向、振幅、相位和偏振状态。在传播过程中,需要考虑介质的折射率、吸收系数、界面的反射率和透射率等因素对射线参数的影响。偏振追迹需要根据菲涅尔方程计算在界面处的反射和透射对偏振状态的影响。

  3. 衍射积分计算: 在射线到达像面或观察面后,需要计算每条射线对该面上特定点光场的贡献。这通常涉及到以下几种方式:

    • 基于衍射核的积分叠加:

       将每条射线视为在观察面上某个位置贡献了一个局部波。利用夫琅禾费或菲涅尔衍射核,将这些局部波的贡献积分叠加起来。这种方法需要选择合适的衍射区域(如将观察面划分为许多小区域),并在每个区域内进行积分。

    • 基于射线束的叠加:

       将相邻的射线组织成“射线束”,并假定每个射线束在观察面上形成一个局部波束,其特性由该射线束的中心射线和相邻射线的特性决定。然后将这些局部波束在观察面上叠加。

    • 基于网格的插值和衍射:

       在观察面上建立一个计算网格。通过追踪射线到达网格点的数量和携带的能量,利用插值方法估计网格点的光场信息,然后再对网格上的光场进行衍射传播。

  4. 光场叠加与分析: 将所有射线的贡献叠加起来,得到观察面上的总光场分布。对于偏振敏感的应用,需要分别计算不同偏振分量的光场,或直接计算斯托克斯参数。最后,对计算得到的光场进行分析,例如计算光强分布、点扩散函数(PSF)、调制传递函数(MTF)等。

VRBDI的关键优势

相比传统的衍射积分方法,VRBDI具有以下显著优势:

  1. 处理复杂光学系统能力强: VRBDI能够直接处理具有任意面形、多层膜、梯度折射率介质等复杂结构的光学系统。射线追迹过程自然地包含了光线在复杂界面处的折射和反射,无需对积分区域进行复杂的划分。

  2. 高效性: 在许多情况下,尤其对于大数值孔径系统,VRBDI的计算效率高于传统的衍射积分方法。通过智能地选择射线数量和分布,可以有效地控制计算量。此外,VRBDI易于实现并行计算,进一步提高效率。

  3. 自然包含矢量效应: VRBDI方法在射线追迹阶段就自然地包含了偏振信息的传播和变化,无需额外的复杂处理。这对于需要考虑偏振效应的光学系统(如偏振成像系统、光刻系统)至关重要。

  4. 适应性强: VRBDI方法可以应用于各种不同的光学仿真场景,包括成像系统、照明系统、非成像光学系统等。它能够计算近场和远场的衍射效应。

  5. 可解释性强: 射线追迹过程提供了直观的光线传播路径信息,有助于理解光在光学系统中的传播行为,为光学设计提供指导。

VRBDI的仿真工具

随着VRBDI方法的不断发展和完善,越来越多的光学仿真软件开始支持或者基于VRBDI方法进行衍射仿真。一些知名的光学设计软件(如Zemax OpticStudio, LightTools)在其高级功能中提供了基于射线追迹的衍射分析模块,虽然可能不是纯粹的VRBDI实现,但其思想与VRBDI有相通之处。

此外,一些专门的仿真工具和软件库也正在涌现,专注于基于VRBDI的衍射仿真。这些工具通常提供了更灵活的建模能力、更高效的计算算法以及更全面的结果分析功能。例如,一些研究机构和公司正在开发基于图形处理器(GPU)加速的VRBDI仿真工具,以进一步提高计算效率。

构建一个基于VRBDI的仿真工具需要深厚的理论基础和编程实现能力。其核心模块包括:

  1. 光学系统建模模块:

     支持定义各种光学元件(透镜、反射镜、面形、多层膜等)的几何形状和材料属性。

  2. 光源建模模块:

     支持定义不同类型光源的空间、角度、光谱和偏振特性。

  3. 矢量射线追迹模块:

     实现高效、准确的矢量射线追迹算法,包括折射、反射、吸收、散射以及偏振状态的更新。

  4. 衍射积分计算模块:

     实现将射线信息转换为光场分布的衍射积分算法,支持不同的积分方式和计算区域。

  5. 结果分析与可视化模块:

     提供光强分布、相位分布、PSF、MTF、偏振分布等结果的分析和可视化功能。

开发这样的工具面临的挑战包括如何高效地生成和追踪大量的矢量射线,如何选择合适的衍射积分算法以及如何有效地处理射线在复杂界面处的相互作用。

VRBDI的挑战与未来发展

尽管VRBDI具有显著优势,但也面临一些挑战和待解决的问题:

  1. 计算量的控制:

     对于非常精细的光场分布计算,需要追踪大量的射线,计算量仍然可能很大。如何智能地生成和筛选射线,以及如何利用自适应网格技术优化计算区域是需要研究的方向。

  2. 衍射积分算法的精度和效率:

     选择合适的衍射积分算法,并保证其在不同场景下的精度和效率,仍然是VRBDI研究的关键问题。

  3. 与波动光学理论的融合:

     如何更好地将离散的射线信息与连续的波动场联系起来,减少由于离散化带来的误差,需要更深入的理论研究。

  4. 复杂散射效应的处理:

     对于表面粗糙度引起的散射效应,传统的射线追迹方法难以准确描述,需要结合更高级的散射模型。

  5. 软件工具的易用性和标准化:

     目前专业的VRBDI仿真工具相对较少,且接口和功能缺乏标准化,限制了其普及和应用。

未来的VRBDI发展方向可能包括:

  • 与机器学习相结合:

     利用机器学习算法优化射线生成、筛选和衍射计算过程,提高效率和精度。

  • 结合时域有限差分(FDTD)等方法:

     对于亚波长结构的衍射,VRBDI可能面临挑战,可以考虑与FDTD等方法相结合,形成混合仿真方法。

  • 实时或近实时仿真:

     通过GPU并行计算和优化算法,实现复杂光学系统的衍射实时仿真,为光学设计和优化提供更便捷的工具。

  • 发展更通用的VRBDI理论框架:

     建立更完善的VRBDI理论体系,使其能够处理更广泛的光学现象,如非线性光学效应等。

  • 推动VRBDI仿真工具的标准化和普及:

     降低VRBDI仿真工具的使用门槛,使其成为光学工程领域常用的仿真方法。

结论

基于矢量射线的衍射积分(VRBDI)作为一种结合了几何光学和波动光学思想的新型衍射仿真方法,在处理复杂光学系统和大数值孔径问题方面展现出了巨大的潜力。它能够有效地追踪矢量射线,自然地包含偏振效应,并且在许多情况下具有更高的计算效率。虽然VRBDI方法仍然面临一些挑战,但随着理论的深入研究和计算技术的发展,相信VRBDI将在未来的光学系统设计、分析和优化中发挥越来越重要的作用。相关的仿真工具也将不断完善,为光学工程师和研究人员提供更强大、更便捷的衍射分析手段,推动光学领域的持续创新和发展。

⛳️ 运行结果

🔗 参考文献

[1] 田博,蒲继雄.部分相干径向偏振光束对两种粒子的捕获[C]//中国光学学会学术大会.2011.

[2] 贾信庭.轴对称偏振光束特性的研究[D].华中科技大学,2011.DOI:10.7666/d.d186243.

[3] 刘晓菲.矢量光诱导多功能磁化场的研究[D].哈尔滨工业大学,2022.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值