✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
电力系统的安全稳定运行是现代社会赖以生存和发展的基础。随着可再生能源渗透率的不断提高,电力系统的惯性水平逐渐下降,一次调频能力面临严峻挑战。一次调频,作为电力系统频率稳定的首要防线,其性能直接关系到电网抵御扰动、维持频率在规定范围内的能力。传统的发电机组参与一次调频,受自身调速性能、爬坡率等限制,响应速度和精度已难以完全满足高比例可再生能源并网下对调频能力的要求。
在此背景下,储能电池因其快速响应、高精度控制和灵活部署等优势,被认为是提升电力系统一次调频能力的关键技术。储能电池参与一次调频,能够显著改善频率响应速度,抑制频率偏差,提升系统稳定性。然而,储能电池的投资成本相对较高,其容量配置不仅需要满足技术性能要求,更需要考虑经济效益,实现技术可靠性与经济可行性的平衡。因此,深入研究考虑储能电池参与一次调频的技术经济模型,并探索合理的容量配置方法,对于促进储能电池在一次调频领域的应用具有重要意义。
本文旨在探讨一种考虑储能电池参与一次调频技术经济模型的容量配置方法。首先,将分析储能电池参与一次调频的技术机理和性能优势,阐述其在提升一次调频性能中的作用。其次,将构建一个包含技术指标和经济成本的技术经济模型,综合考虑储能容量、功率、响应特性以及投资成本、运行维护成本、收益等因素。在此基础上,将提出一种容量配置优化方法,以最小化系统综合成本或最大化综合效益为目标,确定最优的储能容量配置方案。最后,将对该方法进行讨论和展望。
一、 储能电池参与一次调频的技术机理与优势
一次调频是指电力系统频率发生偏差时,发电机组通过调速系统自动调整出力,以抑制频率变化并使其恢复到额定值附近的过程。在同步发电机组为主的电力系统中,发电机组的转子惯性提供了天然的频率支撑,而调速系统的垂差特性则决定了其参与一次调频的能力。
储能电池参与一次调频,通常通过电力电子变流器与电网连接,实现有功功率的快速调节。其技术机理主要体现在以下几个方面:
- 快速响应与高精度控制:
储能电池具有毫秒级的响应速度,远超传统发电机组的调速系统。通过精确控制变流器,可以实现对有功功率的快速、精准调节,有效抑制频率偏差的瞬时波动。
- 灵活的功率调节范围:
储能电池的充放电功率可以在其额定功率范围内灵活调整,不受燃料供应或燃烧过程的限制,能够根据频率偏差大小提供所需的有功功率支撑。
- 无惯性效应:
储能电池不依赖于旋转机械的惯性,其参与一次调频是主动的功率注入或吸收,能够直接对抗频率变化。这对于弥补可再生能源并网导致的系统惯性下降至关重要。
- 垂差控制与死区设置:
储能电池系统可以通过控制策略模拟传统发电机组的垂差特性,参与一次调频的稳态贡献。同时,可以根据实际需求设置不同的死区范围,避免频繁充放电造成的损耗。
相比于传统发电机组,储能电池参与一次调频具有以下显著优势:
- 提升频率响应速度和精度:
快速响应能力能够有效抑制频率下降或上升的速度,提高频率偏差的恢复效率。
- 增强系统惯性支撑:
在可再生能源并网比例较高、系统惯性较低的情况下,储能电池的主动功率支撑能够有效弥补系统惯性不足。
- 改善频率恢复能力:
储能电池的持续充放电能力能够在一定时间内为系统提供持续的功率支撑,有助于频率恢复至额定值。
- 提高调频资源的灵活性:
储能电池可以部署在电网的任何位置,不受地理位置限制,为电网规划和调频资源优化提供了更大的灵活性。
尽管储能电池在一次调频领域具有显著优势,但其容量配置并非越大越好。过大的容量配置会带来高昂的投资成本,而容量不足则可能无法满足调频需求。因此,需要建立科学的技术经济模型,综合评估储能电池的技术性能和经济成本,确定最优的容量配置方案。
二、 考虑储能电池参与一次调频的技术经济模型构建
构建考虑储能电池参与一次调频的技术经济模型,需要综合考虑技术性能指标和经济成本因素。
-
技术性能指标:
- 调频功率需求:
根据电网规模、负荷特性、可再生能源接入情况以及频率偏差阈值等,确定系统所需的一次调频总功率需求。这部分需求将由传统发电机组和储能电池共同承担。
- 储能电池额定功率 (PratedPrated):
储能电池系统能够提供的最大有功功率。
- 储能电池容量 (EratedErated):
储能电池能够存储的最大能量。
- 响应速度:
储能电池系统对频率偏差信号做出响应的时间,越快越好。
- 控制精度:
储能电池系统输出功率与指令功率之间的误差,越小越好。
- 充放电效率:
储能电池在充放电过程中的能量损耗。
- 循环寿命:
储能电池在达到容量衰减阈值前可以完成的充放电循环次数。这影响到储能电池的使用寿命和更换成本。
- 调频功率需求:
-
经济成本因素:
- 投资成本 (CinvestCinvest):
包括储能电池本体成本、变流器成本、安装成本、场地成本等。通常与储能电池的功率和容量相关。
- 运行维护成本 (CO&MCO&M):
包括日常维护、定期检查、故障维修等费用。通常与储能电池的功率和容量相关,也与运行状态有关。
- 更换成本 (CreplaceCreplace):
储能电池达到循环寿命后需要更换的费用。与电池类型、容量和循环寿命有关。
- 充电成本 (CchargeCcharge):
储能电池充电所需的电能成本。与电价、充放电效率和充电量有关。
- 收益 (RrevenueRrevenue):
储能电池参与一次调频获得的收益,例如调频辅助服务市场收益等。与调频性能、市场机制和运行策略有关。
- 投资成本 (CinvestCinvest):
基于上述技术指标和经济成本因素,可以构建一个技术经济模型,用以评估不同储能容量配置方案的综合效益。模型的具体形式可以根据研究目的和数据可得性选择,常见的模型包括:
- 成本模型:
侧重于评估不同配置方案的总成本,例如年化成本模型,将投资成本、运行维护成本、更换成本等分摊到年度。
- 效益模型:
侧重于评估不同配置方案带来的收益,例如调频市场收益、延缓投资收益(通过提升调频能力避免对其他调频资源的投资)等。
- 综合模型:
综合考虑成本和效益,例如总成本最小化模型、净现值最大化模型等。
一个典型的综合模型可以表达为:
最小化 综合成本 (CtotalCtotal) = 年化投资成本 + 年化运行维护成本 + 年化更换成本 + 年化充电成本 - 年化收益
或最大化 综合效益 (BtotalBtotal) = 年化收益 - 年化总成本
其中,各项成本和收益需要根据储能电池的功率和容量,以及预测的运行模式和市场价格进行计算。例如,年化投资成本可以通过投资成本乘以资本回收系数得到。年化更换成本则需要考虑储能电池的循环寿命和更换周期。年化充电成本需要预测储能电池的充电量和电价。年化收益则需要根据调频辅助服务市场的价格和储能电池的调频出力情况进行预测。
在构建模型时,还需要考虑一些约束条件,例如:
- 频率约束:
系统频率偏差应满足电网运行规程的要求。
- 功率平衡约束:
系统总发电功率应等于总负荷加上网络损耗。
- 储能电池运行约束:
储能电池的充放电功率、荷电状态(SOC)应在其允许范围内。
通过构建这样的技术经济模型,可以量化不同储能容量配置方案的技术性能和经济影响,为后续的容量配置优化提供基础。
三、 储能电池参与一次调频的容量配置方法
基于构建的技术经济模型,储能电池参与一次调频的容量配置问题可以转化为一个优化问题,即在满足技术性能要求和系统运行约束的前提下,确定最优的储能电池功率 (PratedPrated) 和容量 (EratedErated) 配置,以实现预定的优化目标(如最小化综合成本或最大化综合效益)。
常见的容量配置优化方法包括:
-
基于仿真的方法:
- 原理:
构建详细的电力系统仿真模型,模拟不同储能容量配置方案下系统在典型工况或极端扰动下的频率响应过程。通过仿真结果评估技术性能指标(如最大频率偏差、频率恢复时间等),并结合经济模型计算综合成本或效益。
- 优点:
能够较为真实地反映系统运行情况,考虑复杂的非线性特性。
- 缺点:
仿真计算量大,对仿真模型的精度要求高,难以遍历所有可能的配置方案。
- 原理:
-
基于数学规划的方法:
- 原理:
将容量配置问题表述为数学规划模型,例如线性规划、整数规划、混合整数线性规划等。将技术指标和经济成本量化为目标函数和约束条件。
- 优点:
可以利用成熟的数学规划求解算法,找到最优解或近似最优解。
- 缺点:
需要对系统特性和模型进行简化,可能无法完全捕捉复杂的非线性关系。
- 原理:
-
启发式算法和智能优化算法:
- 原理:
利用遗传算法、粒子群优化、模拟退火等启发式算法或智能优化算法,在搜索空间中寻找最优或次优的容量配置方案。
- 优点:
适用于解决复杂的非线性优化问题,对模型的简化要求较低。
- 缺点:
无法保证找到全局最优解,结果可能受到算法参数和初始值的影响。
- 原理:
具体采用哪种优化方法取决于问题的复杂程度、可用的计算资源以及所需的求解精度。通常,可以将不同方法结合使用,例如先通过数学规划确定一个初步的配置范围,再利用仿真进行详细评估。
无论采用何种方法,容量配置过程通常包括以下步骤:
- 数据收集与处理:
收集电网运行数据、负荷预测数据、可再生能源发电预测数据、调频需求数据、储能电池技术参数、成本信息、市场价格信息等。
- 需求分析:
根据电网运行规程和系统特性,确定储能电池需要承担的调频功率和能量需求。这部分需求可以通过历史数据分析、负荷预测和可再生能源发电预测以及频率偏差预测来确定。例如,可以分析历史频率偏差事件,确定在不同频率偏差阈值下所需的调频功率。
- 模型构建:
根据前述分析,构建考虑储能电池参与一次调频的技术经济模型,明确目标函数和约束条件。
- 求解优化问题:
利用选定的优化方法,求解数学规划模型或进行仿真评估,确定最优的储能电池功率 (PratedPrated) 和容量 (EratedErated) 配置。
- 结果评估与敏感性分析:
对优化结果进行评估,分析其在不同场景下的表现。进行敏感性分析,考察关键参数(如电池成本、市场价格、调频需求等)对最优配置方案的影响。
- 方案落地与实施:
根据最终确定的最优配置方案,进行详细设计和项目实施。
在确定储能电池容量配置时,还需要注意区分功率需求和能量需求。一次调频主要关注储能电池的功率响应能力,即在频率偏差发生时能够快速注入或吸收有功功率。然而,储能电池的容量决定了其持续提供调频功率的时间。在连续或频繁发生调频需求的情况下,储能电池的容量不足可能导致其在调频过程中电量耗尽,无法持续提供服务。因此,容量配置需要综合考虑功率需求和潜在的能量需求。一些研究采用“能量-功率比”(E/P ratio)来表征储能电池在一次调频应用中的能量储备能力。
四、 讨论与展望
储能电池参与一次调频的技术经济模型的容量配置方法,为优化储能电池在电力系统中的应用提供了科学依据。通过综合考虑技术性能和经济成本,可以避免盲目投资或容量不足的问题,实现储能电池的最佳利用。
然而,该领域的研究仍面临一些挑战和未来的发展方向:
- 不确定性建模:
可再生能源发电的随机性和波动性为电网频率稳定带来不确定性,也对储能电池的调频需求带来不确定性。如何在技术经济模型中有效处理不确定性,例如采用场景分析、鲁棒优化或随机优化等方法,是未来的研究重点。
- 多重服务耦合:
储能电池除了参与一次调频,还可以参与二次调频、削峰填谷、需求侧响应等多种辅助服务。如何在容量配置中考虑储能电池参与多种服务的耦合效应和协同优化,是提升储能电池综合效益的关键。
- 市场机制设计:
合理的电力辅助服务市场机制是引导储能电池参与一次调频并获得合理收益的重要保障。未来的研究需要关注市场机制对储能电池容量配置决策的影响,并提出更适应储能电池特性的市场设计方案。
- 电池技术发展:
储能电池技术的不断发展,例如更高能量密度、更长循环寿命、更低成本的电池技术,将直接影响技术经济模型的参数和容量配置结果。模型需要能够及时反映技术进步带来的变化。
- 在线优化与实时控制:
传统的容量配置是基于长期规划和预测的离线优化。未来可以探索基于在线优化和实时控制的容量配置和调度策略,根据实时电网状态和市场信息动态调整储能电池的运行模式。
结论
储能电池凭借其快速响应和高精度控制的优势,在提升电力系统一次调频能力方面展现出巨大的潜力。为了充分发挥储能电池的作用,必须建立科学的技术经济模型,综合考虑技术性能和经济成本,并探索合理的容量配置方法。本文探讨了一种考虑储能电池参与一次调频技术经济模型的容量配置方法,阐述了技术机理、模型构建和优化方法。未来研究应进一步深入,解决不确定性、多重服务耦合、市场机制设计等方面的挑战,以期为储能电池在电力系统中的广泛应用提供更完善的理论和方法支撑,最终促进电力系统的安全、稳定和可持续发展。
⛳️ 运行结果
🔗 参考文献
[1] 吴林林,刘辉,高文忠,等.大容量电池储能参与电网一次调频的优化控制策略研究[J].华北电力技术, 2017(3):7.DOI:10.16308/j.cnki.issn1003-9171.2017.03.004.
[2] 刘海山,徐宪龙,魏书洲,等.基于提升华北电网考核指标的飞轮储能参与调频划分电量控制策略[J].储能科学与技术, 2023, 12(4):1176-1184.DOI:10.19799/j.cnki.2095-4239.2022.0653.
[3] 王少波.风储联合一次调频控制策略研究[D].内蒙古工业大学,2023.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇