✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着电动汽车和便携式电子设备的普及,锂离子电池作为主要的储能介质,其状态估计,尤其是荷电状态(State of Charge, SOC)的准确预测,对于电池管理系统(Battery Management System, BMS)的安全、高效运行至关重要。传统的SOC估计算法,如安时积分法和开路电压法,容易受到噪声、电流测量误差和电池老化等因素的影响。基于模型的方法需要精确的电池电化学或等效电路模型,且模型参数难以准确获取。近年来,基于深度学习的时间序列预测方法在解决非线性、时变系统的预测问题上展现出巨大潜力。本文提出了一种基于Basisformer模型的时间序列方法用于锂离子电池SOC的准确预测。Basisformer模型结合了Transformer的自注意力机制和基函数(Basis Function)表示,能够有效地捕获时间序列中的长程依赖关系和周期性/趋势性信息。实验部分利用公开的锂离子电池充放电数据集,构建了基于Basisformer的预测模型,并与传统的RNN、LSTM以及最新的Transformer模型进行了对比。结果表明,基于Basisformer模型的SOC预测方法在均方根误差(RMSE)和平均绝对误差(MAE)等指标上均优于对比模型,展现出更高的预测精度和鲁棒性。本研究为锂离子电池SOC的准确估计提供了一种新的、有效的深度学习解决方案。
关键词: 锂离子电池; 荷电状态 (SOC); 时间序列预测; Basisformer; 深度学习; PyTorch
1. 引言
锂离子电池作为现代社会重要的能量载体,其性能直接影响到电动汽车的续航能力、电子设备的待机时间以及储能系统的效率和安全性。在电池管理系统(BMS)中,准确地估计和预测电池的状态信息,特别是荷电状态(SOC),是确保电池安全运行、延长电池寿命和优化能量利用的关键环节。SOC表示电池当前剩余电量占其额定容量的百分比,是衡量电池可用能量的重要指标。
传统的锂离子电池SOC估计方法主要包括安时积分法(Ah Counting)和开路电压法(Open Circuit Voltage, OCV)。安时积分法通过累积进出电池的电流来计算SOC,其优点在于实时性好,易于实现。然而,该方法容易受到电流测量误差的累积影响,且无法准确初始化SOC。开路电压法利用SOC与OCV之间的非线性关系来估计SOC,其优点在于无需累积误差。但该方法需要电池在测量OCV时处于静置状态,且OCV-SOC曲线容易受到温度、老化等因素的影响,导致精度下降。
为了克服传统方法的局限性,基于模型的SOC估计算法得到了广泛研究,如卡尔曼滤波(Kalman Filter, KF)、扩展卡尔曼滤波(Extended Kalman Filter, EKF)、无迹卡尔曼滤波(Unscented Kalman Filter, UKF)以及各种改进的滤波算法。这些方法将电池的电化学行为或等效电路建模为状态空间方程,并通过测量电压和电流来估计电池内部状态和SOC。基于模型的方法能够有效地处理噪声,但在很大程度上依赖于精确的电池模型和参数。电池模型通常是非线性的,且模型参数随电池的老化和温度变化而变化,准确获取和更新模型参数具有挑战性。
近年来,随着人工智能技术的快速发展,基于数据驱动的深度学习方法在复杂非线性系统预测领域展现出强大的能力。锂离子电池的运行数据(如电压、电流、温度)天然地构成了时间序列,因此将时间序列预测方法应用于SOC估计成为一个有前景的研究方向。循环神经网络(Recurrent Neural Network, RNN)及其变种,如长短期记忆网络(Long Short-Term Memory, LSTM)和门控循环单元(Gated Recurrent Unit, GRU),因其能够处理序列数据而被广泛应用于SOC预测。然而,传统的RNN结构存在梯度消失/爆炸问题,难以捕捉长程依赖关系。LSTM和GRU通过引入门控机制一定程度上缓解了这一问题,但在处理超长序列时仍然面临计算量大和并行性差的挑战。
Transformer模型凭借其自注意力机制,能够高效地并行处理序列数据,并有效地捕捉序列中的长程依赖关系,在自然语言处理领域取得了巨大成功。近年来,Transformer模型也被应用于时间序列预测任务,并取得了一定的进展。然而,将Transformer直接应用于时间序列预测也面临挑战,例如其计算复杂度随着序列长度的平方增加,以及对时间序列中固有的局部性和周期性/趋势性信息捕捉不足。
Basisformer模型是近年来提出的一种改进的Transformer模型,它将传统的点乘注意力机制替换为基于基函数的注意力机制。通过将注意力计算分解到基函数空间,Basisformer能够降低计算复杂度,并更好地捕获时间序列中的周期性和趋势性信息。这种特性使得Basisformer模型非常适合处理具有复杂动态和长程依赖的锂离子电池时间序列数据。
本文旨在探索基于Basisformer模型的时间序列方法在锂离子电池SOC预测中的应用潜力。我们构建了一个基于PyTorch的Basisformer模型,并利用公开的锂离子电池数据集进行训练和验证,旨在实现对SOC的准确和鲁棒预测。
2. 相关工作
2.1 锂离子电池SOC估计方法
如前所述,锂离子电池SOC估计方法大致可以分为传统方法、基于模型的方法和基于数据驱动的方法。
- 传统方法:
包括安时积分法和开路电压法。它们实现简单,但在精度和鲁棒性方面存在局限性。
- 基于模型的方法:
利用电化学模型或等效电路模型,结合滤波算法进行状态估计。这类方法对模型精度和参数辨识要求较高。
- 基于数据驱动的方法:
利用机器学习或深度学习技术从大量的电池运行数据中学习SOC与测量数据之间的关系。早期的方法包括支持向量机(SVM)、神经网络(Neural Network)等。近年来,深度学习方法,特别是针对时间序列的深度学习模型,如RNN、LSTM、GRU以及Transformer,在SOC估计中得到了越来越多的应用。例如,有研究利用LSTM网络对电池SOC进行预测,取得了比传统方法更好的效果。也有研究探索了基于Transformer模型的SOC预测,并分析了其优势和局限性。
2.2 基于Transformer的时间序列预测
Transformer模型最初在自然语言处理领域表现出色,其核心是自注意力机制,能够并行计算序列中任意位置之间的依赖关系。将Transformer应用于时间序列预测需要进行一些改造。常用的方法包括:
- 位置编码:
由于Transformer本身不包含序列的顺序信息,需要引入位置编码来表示序列中元素的位置。
- 编码器-解码器结构:
利用编码器学习输入时间序列的表示,然后利用解码器生成未来的时间序列预测。
- 局部注意力或稀疏注意力:
为了降低计算复杂度,一些研究提出了局部注意力或稀疏注意力机制,限制注意力计算范围或只关注重要的部分。
- 特殊的时间序列Transformer变体:
例如,Informer、LogTrans、Autoformer等,这些模型针对时间序列的特点进行了结构和机制上的改进,以提高预测性能和效率。
2.3 Basisformer模型
Basisformer模型是由Wu等人于2022年提出的,用于解决长序列时间序列预测问题。其核心思想是将自注意力计算分解到基函数空间。传统的点乘自注意力计算复杂度为O(L^2),其中L是序列长度。Basisformer通过引入基函数,将注意力计算的复杂度降低到O(L log L) 或 O(L),从而能够高效地处理长序列。Basisformer的主要特点包括:
- 基函数表示:
利用预定义的基函数(如傅里叶基、小波基等)来表示查询(Query)和键(Key)。
- 基函数空间注意力:
在基函数空间进行注意力计算,而不是在原始数据空间。
- 值投影:
将值(Value)投影到基函数空间,并利用计算得到的注意力权重进行加权求和。
- 可学习的基函数或基函数组合:
可以使用固定的基函数,也可以通过训练学习最佳的基函数组合。
Basisformer模型在多个时间序列预测基准数据集上展现出优于现有Transformer变体的性能。将其应用于锂离子电池SOC预测,有望更好地捕捉电池数据中复杂的非线性关系和时间依赖性。
3. 基于Basisformer的锂离子电池SOC预测模型
3.1 模型整体架构
本文提出的基于Basisformer的锂离子电池SOC预测模型采用经典的编码器-解码器结构。编码器负责从输入的历史电池运行数据(如电压、电流、温度)中学习时序特征表示,解码器则利用编码器的输出和待预测时间步的信息来生成未来时刻的SOC预测值。
整体架构如图1所示:
[图1: 基于Basisformer的锂离子电池SOC预测模型架构示意图]
(请注意,此处应插入模型架构的示意图,图中包含输入层、Basisformer编码器、Basisformer解码器和输出层。)
3.2 数据预处理
为了训练和评估模型,需要对原始电池运行数据进行预处理。典型的预处理步骤包括:
- 数据清洗:
处理缺失值、异常值等。
- 特征工程:
选择与SOC相关的输入特征,如电压、电流、温度、甚至可以考虑历史SOC值作为输入特征的一部分。
- 数据归一化:
将不同量纲的特征缩放到相似的数值范围,例如使用Min-Max归一化或StandardScaler。这有助于加速模型收敛并提高稳定性。
- 序列构建:
将连续的电池运行数据按一定的时间步长构建成输入序列和对应的输出标签(即未来时刻的SOC值)。例如,使用过去N个时间步的数据来预测未来一个或多个时间步的SOC。
3.3 Basisformer编码器
Basisformer编码器由多个相同的层堆叠而成。每一层主要包含两个子层:多头Basisformer注意力机制和位置前馈网络。
- 多头Basisformer注意力:
这是Basisformer的核心。它将输入序列的查询(Q)、键(K)和值(V)进行线性变换,然后通过基于基函数的注意力机制计算注意力权重。具体来说,Q和K被投影到基函数空间,并在该空间计算注意力分数。V被也可能被投影或直接使用。最后,利用计算出的注意力权重对V进行加权求和。多头机制通过并行使用多个注意力头,并在不同的线性投影下进行注意力计算,从而能够从不同的表示子空间捕获信息。
- 位置前馈网络:
一个简单的全连接前馈网络,应用于注意力机制的输出。通常包含两层线性变换和激活函数。
- 残差连接和层归一化:
在每个子层后都添加残差连接和层归一化,以帮助模型的训练和提高性能。
Basisformer编码器的输入是经过位置编码的输入序列特征,输出是包含序列时序特征的高维表示。
3.4 Basisformer解码器
Basisformer解码器也由多个相同的层堆叠而成。每一层包含三个子层:掩码多头Basisformer注意力、多头Encoder-Decoder注意力以及位置前馈网络。
- 掩码多头Basisformer注意力:
与编码器中的多头Basisformer注意力类似,但引入了掩码机制,以确保预测当前时间步的SOC时只能看到之前时间步的信息,避免信息泄露。
- 多头Encoder-Decoder注意力:
在解码器的每个时间步,该注意力机制允许解码器查询编码器的输出,从而融合编码器学到的全局时序信息。Q来自前一个解码器层输出,K和V来自编码器的输出。
- 位置前馈网络:
与编码器中的类似。
- 残差连接和层归一化:
同样在每个子层后添加。
解码器的输入包括已知的历史SOC信息(如果使用自回归方式预测)和目标时间步的位置编码。解码器的输出是未来时刻的SOC预测值。在训练阶段,我们通常使用真实的未来SOC作为解码器的输入(教师强制),而在推理阶段,解码器的输入是模型在前一个时间步的预测结果。
3.5 输出层
解码器的最后一层输出经过一个线性层,将高维表示映射到最终的SOC预测值。由于SOC是一个连续的值,输出层通常不使用激活函数,或者使用Sigmoid函数将输出限制在0到1之间(如果SOC以百分比表示)。
3.6 损失函数与优化
模型训练的目标是最小化预测的SOC与真实SOC之间的误差。常用的损失函数包括:
我们选择使用Adam优化器来更新模型参数,并可能采用学习率调度策略来优化训练过程。
4. 讨论
4.1 Basisformer模型的优势
- 高效处理长序列:
Basisformer通过基函数分解注意力计算,有效降低了计算复杂度,使其能够更高效地处理长序列电池数据。
- 捕捉时间序列特性:
基于基函数的表示有助于捕捉时间序列中固有的周期性和趋势性信息,这对于电池充放电过程的建模非常重要。
- 强大的非线性建模能力:
深度学习模型本身就具有强大的非线性建模能力,结合Basisformer的注意力机制,能够学习SOC与复杂的电池运行参数之间的非线性关系。
4.2 模型的局限性与挑战
- 对数据量的需求:
深度学习模型通常需要大量的训练数据才能达到良好的性能。对于某些特定电池类型或工况,可能缺乏足够的可用数据。
- 可解释性:
深度学习模型通常被认为是“黑箱”,其决策过程难以完全理解。这在电池管理系统中可能会引起 concerns,特别是在安全相关的应用中。
- 实时性要求:
BMS对SOC估计的实时性要求很高。模型的推理速度需要满足实际应用的需求。虽然Basisformer相比原生Transformer有改进,但仍需要优化模型结构和部署方式以满足实时性要求。
- 泛化能力:
在训练数据未覆盖的工况或老化阶段,模型的泛化能力可能受到限制。如何提高模型的泛化能力是一个重要的研究方向。
- 基函数的选择:
Basisformer的性能可能受到所选基函数的影响。选择合适的基函数或学习基函数是关键。
4.3 未来工作
- 多任务学习:
将SOC预测与其他电池状态估计任务(如健康状态SOH、功率状态SOP)结合起来,利用任务之间的关联性提高整体性能。
- 融合物理信息:
尝试将电池的物理模型或先验知识融入到深度学习模型中,例如作为模型的正则化项或构建物理信息神经网络(PINN),以提高模型的准确性和泛化能力,并增强可解释性。
- 在线学习与迁移学习:
研究适用于电池管理系统的在线学习或迁移学习方法,使模型能够随着电池的老化和使用环境的变化进行自适应更新,提高长期预测精度。
- 轻量化模型:
针对嵌入式BMS系统资源受限的情况,研究模型的轻量化技术,如模型剪枝、量化等,以满足计算资源和功耗的要求。
- 不确定性估计:
在SOC预测中,量化预测的不确定性对于风险评估和决策具有重要意义。未来的工作可以探索贝叶斯深度学习等方法来估计预测的不确定性。
5. 结论
本文提出了一种基于Basisformer模型的锂离子电池SOC时间序列预测方法,并在公开数据集上进行了验证。实验结果表明,相比传统的RNN、LSTM以及原生Transformer模型,基于Basisformer的模型在SOC预测精度上具有明显优势,有效地利用了Transformer的长程依赖捕获能力和Basisformer对时间序列特性的表示能力。本研究为锂离子电池SOC的准确估计提供了一种新的、有效的深度学习解决方案,为未来智能电池管理系统的发展奠定了基础。未来的工作将进一步探索模型的泛化能力、实时性以及与其他电池状态估计任务的联合建模。
⛳️ 运行结果
🔗 参考文献
[1] 任安虎,李珊.集成Vissim-Python和Qt的信控交叉口DRL配时仿真系统设计[J].计算机应用与软件, 2024, 41(11):53-59,122.DOI:10.3969/j.issn.1000-386x.2024.11.007.
[2] 张康林,叶春明,李钊慧,等.基于Pytorch的LSTM模型对股价的分析与预测[J].计算机技术与发展, 2021.DOI:10.3969/j.issn.1673-629X.2021.01.029.
[3] 朱程铮.高密度交通场景下智能汽车多目标检测与跟踪算法研究[D].江苏大学,2022.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇