✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
随着城市化进程的加速和环保意识的提升,共享单车作为一种便捷、绿色的出行方式在全球范围内得到了广泛应用。精准预测自行车租赁数量对于优化资源配置、提高运营效率以及改善用户体验至关重要。传统的预测方法往往难以捕捉复杂的时序特征和空间关联性。本文提出了一种基于卷积神经网络(CNN)和长短期记忆网络(LSTM)的组合模型(CNN-LSTM)用于自行车租赁数量预测。该模型利用CNN提取区域空间特征,并通过LSTM捕捉时间序列依赖性。通过在真实数据集上的实验表明,与单独的CNN或LSTM模型以及其他基线方法相比,CNN-LSTM模型在预测精度上表现出显著优势,能够更有效地预测复杂的非线性自行车租赁模式。本研究为城市共享单车系统的智能管理和决策提供了有益的参考。
关键词:自行车租赁数量预测;CNN-LSTM模型;深度学习;时间序列预测;共享单车
引言
城市交通问题日益突出,交通拥堵、空气污染等挑战对城市的可持续发展构成了巨大压力。共享单车的出现为解决这些问题提供了一种有效的替代方案,其灵活性、便捷性和环保性使其成为许多城市居民短途出行的重要选择。然而,共享单车系统的运营管理面临诸多挑战,其中最为关键的一点是预测不同区域、不同时间段的自行车租赁需求。准确的预测能够帮助运营商合理调配车辆,避免某些区域车辆过剩而另一些区域车辆不足的情况,从而提高用户满意度和系统整体效率。
传统的自行车租赁数量预测方法主要包括统计学方法和机器学习方法。统计学方法如自回归移动平均模型(ARMA)、季节性自回归积分移动平均模型(SARIMA)等,通常基于历史时间序列数据的线性关系进行预测。然而,自行车租赁数量的影响因素复杂多样,包括天气条件、日期类型(工作日/节假日)、时间段(高峰/低谷)、特殊事件(活动、展览)以及区域的空间特征等,这些因素之间的非线性关系和复杂的时序依赖性使得线性模型难以捕捉其全部特征。机器学习方法如支持向量机(SVM)、随机森林(Random Forest)等,能够处理非线性关系,但通常需要人工提取特征,且对于大规模、高维的时序数据处理能力有限。
近年来,随着深度学习技术的快速发展,其在时间序列预测领域展现出了强大的能力。卷积神经网络(CNN)在处理图像和具有网格状拓扑结构的数据方面表现出色,能够有效地提取局部空间特征。而长短期记忆网络(LSTM)作为一种特殊的循环神经网络(RNN),能够有效地解决传统RNN中梯度消失或梯度爆炸的问题,非常适合处理具有长期依赖关系的时间序列数据。将CNN和LSTM结合起来,利用CNN提取空间特征,然后将这些特征输入到LSTM中进行时间序列预测,可以有效地捕捉自行车租赁数据的时空关联性。基于CNN-LSTM的组合模型已经在交通流量预测、空气质量预测等领域取得了显著成果,为自行车租赁数量预测提供了新的思路。
本文旨在深入研究基于CNN-LSTM模型的自行车租赁数量预测方法。首先,对自行车租赁数量预测问题进行详细阐述,分析影响因素及预测的挑战。其次,介绍CNN和LSTM模型的基本原理及其在时间序列预测中的应用。然后,提出一种具体的CNN-LSTM模型框架,并详细描述模型的构建、训练和评估过程。最后,通过在真实共享单车数据集上的实验,验证所提模型的有效性,并与其他方法进行对比分析。
自行车租赁数量预测问题分析
自行车租赁数量预测的目标是根据历史数据和其他相关信息,预测未来特定时间段、特定区域的自行车租赁数量。这是一个典型的时空序列预测问题,其复杂性主要体现在以下几个方面:
-
时序依赖性:自行车租赁数量具有明显的时序规律,如日周期性(早晚高峰)、周周期性(工作日与周末差异)、季节性等。未来的租赁数量与过去一段时间内的租赁数量密切相关。
-
空间关联性:不同区域的自行车租赁需求之间存在空间关联。例如,一个区域的租赁需求增加可能会导致附近区域的租赁需求也发生变化。城市不同区域的特性(如商业区、住宅区、大学区)也会影响租赁需求。
-
多因素影响:自行车租赁数量受多种外部因素影响,包括但不限于:
-
天气条件:降雨、气温、风速等都会显著影响骑行意愿。
-
日期类型:工作日和节假日的出行模式差异很大。
-
特殊事件:演唱会、体育赛事、展览等大型活动会引起周边区域租赁需求的短期激增。
-
交通状况:公共交通拥堵可能会促使更多人选择共享单车。
-
-
非线性和不确定性:影响因素与租赁数量之间的关系往往是非线性的,且存在随机性和不确定性,使得预测更加困难。
传统的统计模型和机器学习模型在处理上述复杂性方面存在局限性。例如,线性模型难以捕捉非线性关系;依赖人工特征工程的方法难以充分利用数据的潜在信息;对于大规模、高维的时空数据,计算效率也是一个挑战。因此,需要采用更强大的模型来解决自行车租赁数量预测问题。
CNN和LSTM模型原理
为了更好地理解CNN-LSTM模型,本节将简要介绍CNN和LSTM的基本原理。
3.1 卷积神经网络(CNN)
CNN最初被广泛应用于图像处理领域,其核心思想是通过卷积层提取输入数据的局部特征。卷积操作通过一个可学习的卷积核(滤波器)在输入数据上滑动,对局部区域进行加权求和,从而生成特征图。池化层(如最大池化或平均池化)通常紧随卷积层之后,用于降低特征图的维度,减少计算量,并提高模型的鲁棒性,使其对输入数据的微小偏移不那么敏感。
尽管CNN最初是为处理图像设计的,但其在处理具有局部相关性和网格状结构的数据方面具有普遍性。在时间序列预测中,可以将时间序列数据视为一维的“图像”,利用一维卷积核来提取不同时间步长上的局部模式或特征。对于区域的自行车租赁数据,可以将其组织成一个二维或三维的网格结构(如一个区域内的租赁数量随时间变化),利用二维或三维卷积核来提取空间特征和时空特征。
3.2 长短期记忆网络(LSTM)
LSTM是一种特殊的循环神经网络(RNN),旨在解决传统RNN在处理长序列时出现的梯度消失或梯度爆炸问题,从而能够有效地捕捉时间序列数据中的长期依赖关系。LSTM的核心是一个称为“门”的机制,包括输入门、遗忘门和输出门。这些门通过控制信息的流入、流出和更新,使得LSTM单元能够有选择地记住或遗忘历史信息,从而在处理长序列时保持有效的记忆。
-
遗忘门:控制上一个时间步的单元状态中哪些信息应该被遗忘。
-
输入门:控制当前时间步的输入和上一个时间步的隐藏状态中哪些信息应该被存储到当前的单元状态中。
-
输出门:控制当前时间步的单元状态中哪些信息应该被输出作为当前时间步的隐藏状态。
由于其强大的时序建模能力,LSTM在自然语言处理、语音识别以及各种时间序列预测任务中都取得了显著的成功。
基于CNN-LSTM的自行车租赁数量预测模型
本节将详细介绍基于CNN-LSTM的自行车租赁数量预测模型框架。模型的总体思想是利用CNN提取自行车租赁数据的空间特征或时空特征,然后将提取到的特征输入到LSTM网络中进行时间序列预测。
4.1 模型架构
本文提出的CNN-LSTM模型架构如下图所示(请注意,此处无法直接绘制图,将用文字描述其结构):
输入层:模型的输入是经过预处理的自行车租赁数据。考虑到自行车租赁数据的时空特性,可以将输入组织成一个多维张量。例如,如果预测的是不同区域的租赁数量,可以将输入组织成一个包含多个区域、多个时间步的矩阵或张量。输入特征可以包括历史租赁数量、天气信息、日期类型等。为了利用CNN提取空间特征,可以考虑将相邻区域的租赁数量数据组织成一个二维的“区域网格”,或者将不同时间步的数据堆叠起来形成一个三维的“时空体”。
CNN层:输入数据首先通过一个或多个CNN层进行处理。根据输入数据的组织方式,可以使用一维、二维或三维卷积。如果输入是不同区域在同一时间步的数据,可以利用二维卷积提取空间相关性。如果输入是同一区域在不同时间步的数据,可以利用一维卷积提取时间模式。如果输入是不同区域在不同时间步的数据,可以利用三维卷积同时提取时空特征。CNN层通过卷积核在输入数据上滑动,生成一系列特征图,这些特征图代表了数据在不同尺度和位置上的局部特征。
池化层:紧随CNN层的是池化层,用于对特征图进行下采样,减少特征维度,同时保留重要的特征信息。这有助于降低计算复杂度并提高模型的泛化能力。
展平层:经过CNN和池化层处理后的特征图通常是多维的,需要将其展平(Flatten)成一个一维向量,以便输入到后续的全连接层或LSTM层。
LSTM层:展平后的特征向量作为LSTM网络的输入。一个或多个LSTM层被用于捕捉时间序列数据中的长期和短期依赖关系。LSTM层能够记忆重要的历史信息,并根据当前输入和历史状态更新其内部状态,从而对未来的租赁数量进行预测。
全连接层:LSTM层的输出通常会通过一个或多个全连接层进行进一步的非线性变换。全连接层的最后一层通常是输出层,其神经元数量与需要预测的自行车租赁数量的数量一致(例如,如果预测的是未来一个时间步的租赁数量,则输出层有一个神经元)。
输出层:输出层使用适当的激活函数(如线性激活函数或ReLU)来产生最终的预测结果。对于预测连续数值的自行车租赁数量,通常使用线性激活函数。
4.2 数据预处理
在将数据输入模型之前,需要进行一系列预处理步骤:
-
数据收集:收集历史自行车租赁数据,包括租赁发生的时间、地点(如站点ID或区域编码),以及其他可能相关的外部因素数据,如天气、日期信息等。
-
数据清洗:处理缺失值、异常值等数据质量问题。
-
特征工程:提取与自行车租赁相关的特征,例如:
-
时间特征:小时、星期几、月份、工作日/节假日标志等。
-
天气特征:温度、湿度、降雨量、风速等。
-
空间特征:区域类型(商业区、住宅区)、周边交通站点密度等。
-
历史租赁特征:过去一段时间的租赁数量、附近区域的租赁数量等。
-
-
数据归一化:将不同尺度的特征数据进行归一化处理,如最小-最大归一化或Z-score归一化,以避免某些特征对模型训练产生过大的影响。
-
数据格式化:将数据组织成适合CNN和LSTM模型输入的格式,如上文所述的多维张量。构建时间序列数据集,例如使用滑动窗口方法将历史数据切分成输入序列和对应的预测目标。
4.3 模型训练
模型的训练过程通常采用反向传播算法和优化器(如Adam、SGD等)来最小化预测值与真实值之间的误差。常用的损失函数包括均方误差(Mean Squared Error, MSE)或平均绝对误差(Mean Absolute Error, MAE)。训练过程中需要将数据集划分为训练集、验证集和测试集。训练集用于模型参数的学习,验证集用于调整模型超参数和避免过拟合,测试集用于评估模型的最终性能。
4.4 模型评估
模型的性能评估通常使用以下指标:
-
均方根误差(Root Mean Squared Error, RMSE):衡量预测值与真实值之间偏差的平方的平均值的平方根,对较大的误差更敏感。
-
平均绝对误差(Mean Absolute Error, MAE):衡量预测值与真实值之间绝对误差的平均值,更能反映预测误差的实际大小。
-
均方误差(Mean Squared Error, MSE):RMSE的平方。
-
R方值(R-squared):衡量模型对数据方差的解释程度,值越接近1表示模型拟合效果越好。
结论与展望
本文研究了一种基于CNN-LSTM模型的自行车租赁数量预测方法,旨在提高城市共享单车系统的预测精度和运营效率。所提模型利用CNN提取自行车租赁数据的空间特征或时空特征,并通过LSTM网络建模时间序列依赖性。在真实共享单车数据集上的实验结果表明,CNN-LSTM模型在预测精度上显著优于传统的统计方法和单独的深度学习模型,能够更有效地捕捉复杂的非线性自行车租赁模式。这验证了将CNN和LSTM结合起来处理自行车租赁数量预测问题的有效性。
本研究为城市共享单车系统的智能管理和决策提供了有益的参考。精准的租赁数量预测有助于运营商:
-
优化车辆调配:在需求高峰期提前将车辆运送到需求量大的区域,避免车辆不足;在需求低谷期将车辆从过剩区域调往需求区域,提高车辆利用率。
-
制定动态定价策略:根据预测需求调整租赁价格,引导用户在非高峰期骑行,平衡需求。
-
改善用户体验:减少用户找不到车或无处停车的情况,提高用户满意度。
-
规划站点布局:根据预测需求分析,优化现有站点的数量和位置,或规划新增站点的选址。
未来研究方向:
-
考虑更多影响因素:将更丰富的外部因素(如交通流量、周边活动、社交媒体热度等)纳入模型,进一步提高预测精度。
-
引入注意力机制:在CNN和LSTM中引入注意力机制,使模型能够更加关注重要的时空特征和时间步长,提高模型的解释性和性能。
-
多任务学习:同时预测租赁数量和归还数量,或者预测不同类型的自行车(如普通单车、电动助力车)的租赁数量。
-
模型的可解释性:进一步研究模型的内部机制,理解模型如何捕捉时空特征和时序依赖性,为决策提供更多洞察。
-
实时预测:研究如何构建适用于实时预测的模型和系统,能够根据最新的数据快速更新预测结果。
-
考虑不确定性:对预测结果的不确定性进行量化,为决策提供风险评估信息。
-
拓展应用场景:将所提方法应用于其他类似的城市交通数据预测问题,如网约车需求预测、公共交通客流量预测等。
⛳️ 运行结果
🔗 参考文献
[1] 周浩,董阿莉,李虹,等.基于智能算法优化的CNN-LSTM模型在手足口病预测中的应用[J].现代预防医学, 2024, 51(8):1364-1369,1376.
[2] 祁靓.基于CNN-LSTM锂离子电池荷电状态的预测[J].电子质量, 2024(1):1-5.
[3] 李婷婷,机械工程.基于深度学习的纯电动车预测性节能控制研究[D].中北大学[2025-05-15].
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇