模型的指数移动平均EMA

1、概念

指数移动平均(Exponential Moving Average,EMA),也叫权重移动平均(Weighted Moving Average),是一种给予近期数据更高权重的平均方法。

就是说,用原理数据来影响现在数据的更新。

通俗版本理解:EMA是将每次梯度更新后的权值和前一次的权重进行联系,使得本次更新收到上次权值的影响。

2、原理

公式:v_{t}=\partial \cdot v_{t-1}+(1-\partial)\cdot \theta_{t}

a代表衰减率,该衰减率用于控制模型更新的速度,一般设为0.9-0.999。该值越大表示与上一次的影响越大,本次权重变化越小,与上次权重越接近,越稳定。

\theta_{t}表示本次通过计算的权重,也可以认为是“虚拟权重”

v_{t-1}表示上次的模型权重

3、应用

应用场景:在验证或者推理时使用。  滑动平均可以使模型在测试数据上更健壮&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值